Testicular development and spermatogenesis in mice involve complex and dynamic gene regulation and chromatin remodelling. In this study, Real-time fluorescence quantitative PCR (RT-qPCR), Western Blot (WB), Immunofluorescence (IF), transfection and other techniques were used to analyse the expression of Ino80d mRNA and its encoded proteins in mouse testicular tissue and mouse spermatogonial cells, and to further analyse the possible target-regulatory relationship and function of miR-92a-3p and Ino80d. We found that Ino80d mRNA and protein expression was up-regulated in adult mouse testis tissue relative to juvenile mouse testis tissue, whereas miR-92a-3p expression was down-regulated in adult mouse testis tissue. Immunofluorescence results showed that the Ino80d protein was mainly localized in the nucleus of male germ cells. Ino80d protein expression is higher in spermatogonia, spermatid and lower in primary spermatocytes, secondary spermatocytes and sperm. There is a decreasing trend in development from spermatogonia to secondary spermatocytes. The transfection results showed that the expression levels of Ino80d mRNA and protein were down-regulated after overexpression of miR-92a-3p in mouse spermatogonia. Increased miR-92a-3p may be a key factor in inhibiting the expression of Ino80d mRNA and proteins in the miR-92a-3p mimics group of mouse spermatogonial cells, whereas differential expression may be a result of the negative regulation of miR-92a-3p, which regulates testicular development and spermatogenesis in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.repbio.2024.100961DOI Listing

Publication Analysis

Top Keywords

mouse testis
16
ino80d mrna
16
testis tissue
12
ino80d
8
mouse
8
testicular development
8
development spermatogenesis
8
spermatogenesis mice
8
expression ino80d
8
mouse spermatogonial
8

Similar Publications

Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.

View Article and Find Full Text PDF

The physical abrasion of plastics from simple everyday entered the food chain, with associated risks recently emphasized. Although many studies have reported the adverse effects of microplastics (MPs) on human, the reproductive implications of continuous exposure to physically abraded polyethylene terephthalate (PET)-MPs remain unexplored. Ingestion of physically abraded PET-MPs (size range: 50-100 µm) in mice from 5 to 34 weeks of age at an annual intake relevant dose of MPs (5 mg week) significantly impaired male reproductive function.

View Article and Find Full Text PDF

Germ cells are essential for fertility, embryogenesis, and reproduction. Germline development requires distinct types of germ granules, which contains RNA-protein (RNP) complexes, including germ plasm in embryos, piRNA granules in gonadal germ cells, and the Balbiani body (Bb) in oocytes. However, the regulation of RNP assemblies in zebrafish germline development are still poorly understood.

View Article and Find Full Text PDF

Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells.

Genes Dev

December 2024

Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom

The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells.

View Article and Find Full Text PDF

Gametogenesis is a process in which dysfunctions lead to infertility, a growing health and social problem worldwide. In both spermatogenesis and oogenesis, post-transcriptional gene expression regulation is crucial. Essentially, all mRNAs possess non-templated poly(A) tails, whose composition and dynamics (elongation, shortening, and modifications) determine the fate of mRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!