A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-aptamer-decorated reduction-activated dimeric-prodrug nanoparticles for broad-spectrum treatment of leukemia. | LitMetric

Leukemia remains a fatal disease for most affected patients, and a simple and effective therapeutic strategy is urgently needed. Targeted delivery chemo-drugs to leukemia cells shows promise, but the diverse subtypes of leukemia make single-ligand nanomedicine often ineffective. Herein, a dual-aptamer decorated, reduction-responsive dimeric prodrug-based nanoparticle (NP), termed SXP-NPs, was developed using the two leukemia-specific aptamers Sgc8c and XQ-2d, a reduction-responsive podophyllotoxin (POD) dimeric prodrug, and DSPE-PEG2000. Because the receptors of XQ-2d (CD71) and Sgc8c (PTK7) are overexpressed in different subtypes of leukemia cells, SXP-NPs can broadly and selectively recognize these leukemia cells after intravenous administration, subsequently releasing POD in response to the intracellular high-reduction environment to kill the leukemia cells. In vitro experiments showed that these simple SXP-NPs can specifically bind to various leukemia cancer cells and kill them. In vivo experiments revealed that SXP-NPs can remarkably reduce spleen weight, decrease white blood cell counts, and extend overall survival in a preclinical leukemia animal model. The in vitro and in vivo validation demonstrated that SXP-NPs offer several advantages, including high drug-loading potential, broad-spectrum recognition of leukemia cells, reduced systemic toxicity, and enhanced therapeutic effects of the drug. Taken together, this study provides a simple and effective strategy for broad-spectrum leukemia therapy and highlights the clinical potential of SXP-NPs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2024.117543DOI Listing

Publication Analysis

Top Keywords

leukemia cells
20
leukemia
11
simple effective
8
subtypes leukemia
8
cells
6
sxp-nps
6
dual-aptamer-decorated reduction-activated
4
reduction-activated dimeric-prodrug
4
dimeric-prodrug nanoparticles
4
nanoparticles broad-spectrum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!