Toxicological effects and defense mechanisms induced by beta-cypermethrin in Drosophila melanogaster.

J Environ Manage

College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • The study investigates the toxic effects of the pyrethroid insecticide beta-cypermethrin (beta-CYP) on Drosophila melanogaster larvae, revealing negative impacts like delayed development and intestinal damage.
  • Researchers found that beta-CYP exposure increased antioxidant enzyme activity and oxidative stress responses in the larvae, as indicated by heightened messenger RNA levels of glutathione S-transferase and reactive oxygen species content.
  • The insecticide also activated key molecular pathways related to cell growth, apoptosis resistance, and immune response, suggesting that Drosophila employs various mechanisms to combat the toxicity of beta-CYP.

Article Abstract

Widespread use of the pyrethroid insecticide beta-cypermethrin (beta-CYP) has led to adverse effects on nontarget populations within agroecosystems. Despite the efficacy of beta-CYP in pest control, its toxicological and defense mechanisms remain incompletely understood. In the present study, we explored the toxicological effects, antioxidant mechanisms and immune response against beta-CYP using Drosophila melanogaster, a well-established model organism for the study of insect biology, to represent the broader class of nontarget organisms. We exposed Drosophila larvae to 0.667 μg/mL beta-CYP and revealed that delayed development and caused intestinal epithelial damage in larvae. To gain insights into the molecular underpinnings of these effects, RNA sequencing analysis and quantitative polymerase chain reaction validation were performed. These analyses revealed that the messenger RNA levels of glutathione S-transferase were increased, third instar larvae exhibited an increase in reactive oxygen species content and a corresponding increase in antioxidant enzyme activity in response to beta-CYP exposure, indicating an upregulated response to oxidative stress. Beta-CYP also activated Hippo pathway to resist apoptosis and promote cell proliferation. Moreover, beta-CYP induced melanization and Toll immune pathways involved in immune response in Drosophila larvae, specifically the Toll pathway gene Drs. This activation suggests that Drosophila increases antioxidant defenses and promotes mitosis in damaged tissues as compensatory mechanisms to mitigate the cytotoxic effects of beta-CYP. These findings provide new insight into the mechanisms of beta-CYP-induced toxicity and the defense mechanisms in insects; they may also inform strategies for the sustainable use of insecticides and the development of mitigation measures to protect nontarget species in agroecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122845DOI Listing

Publication Analysis

Top Keywords

defense mechanisms
12
toxicological effects
8
drosophila melanogaster
8
beta-cyp
8
immune response
8
response beta-cyp
8
drosophila larvae
8
mechanisms
6
drosophila
5
effects defense
4

Similar Publications

Aging-induced Alternation in the Gut Microbiota Impairs Host Antibacterial Defense.

Adv Sci (Weinh)

January 2025

Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.

Older individuals experience increased susceptibility and mortality to bacterial infections, but the underlying etiology remains unclear. Herein, it is shown that aging-associated reduction of commensal Parabacteroides goldsteinii (P. goldsteinii) in both aged mice and humans critically contributes to worse outcomes of bacterial infection.

View Article and Find Full Text PDF

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Background matching and disruptive coloration are defense mechanisms of animals against visual predators. Disruptive coloration tends to evolve in microhabitats that are visually heterogeneous, while background matching is favored in microhabitats that are chromatically homogeneous. Controlling for the phylogeny, we explored the evolution of the coloration and the marking patterns in the sexual dichromatic and widely distributed neotropical grasshoppers of the genus Sphenarium.

View Article and Find Full Text PDF

The Hippo Signaling Pathway Manipulates Cellular Senescence.

Cells

December 2024

Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.

The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest.

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!