The extensive contamination of the tire antidegradant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) in aquatic environments have raised concerns about its potential threats to aquatic organisms. Here, the responses of green algae Chlorella pyrenoidosa (C. pyrenoidosa) to 6PPD exposure were investigated for the first time. The growth of C. pyrenoidosa experienced three sequential phases, including inhibition, recovery and stimulation. Physiological and transcriptome analysis suggested that the growth inhibition was associated with the suppressed nitrogen assimilation and amino acid biosynthesis pathways, among which nitrate transporter (NRT) 2.1 was a key target of 6PPD. Molecular docking revealed the steadily binding of 6PPD to the substrate entry region of NRT 2.1 via hydrogen bonds and π - cation interaction, blocking the acquisition of extracellular inorganic nitrogen. Along with the removal of 6PPD through abiotic processes and biodegradation, an adaptive metabolic shift in cells not only facilitated growth recovery but also triggered a compensatory stimulation phase. With regard to microalgal adaptation, upregulated DNA replication and repair pathways served to maintain the integrity of the genetic information, enhanced photosynthesis cascades and central carbon metabolism improved carbon flux and energy conversion to microalgal biomass, recovered amino acid biosynthesis produced essential proteins for multiple metabolisms. The results provide new insights into microalgal molecular responses to 6PPD exposure, facilitating a better understanding of ecological consequences of 6PPD in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.136122 | DOI Listing |
Environ Res
January 2025
Thermochemical Processes Group, Aragón Institute for Engineering Research (I3A), University of Zaragoza, C/Mariano Esquillor s/n, 50.018, Zaragoza, Spain. Electronic address:
This work explores the synergies between N-rich (Chlorella pyrenoidosa) microalgae and N-deficient (Undaria pinnatifida) macroalgae for the production of N-containing hydrochar and solid biofuels via co-hydrothermal carbonization (co-HTC). The impact of the feedstock (each alga alone and all possible binary mixtures) was comprehensively assessed under different temperatures (180-260 °C) and times (60-240 min). The synergies between micro and macroalgae governed product distribution, nitrogen transformation pathways, and hydrochar quality, with these effects varying by processing conditions.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316000, China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, 316000, China. Electronic address:
The lack of cost-effective nutrient sources and harvesting methods is currently a major obstacle to the production of sustainable biofuels from microalgae. In this study, Chlorella pyrenoidosa was cultured with saline wastewater in a stirred photobioreactor, and lipid-rich flocculent microalgae particles were successfully constructed. As the influent salinity of the photobioreactor increased from 0% to 3%, the particle size and sedimentation rate of flocculent microalgae particles gradually increased, and the lipid accumulation of microalgae also increased gradually.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
Co-metabolism with appropriate carbon sources has been demonstrated to effectively enhance the removal of ubiquitous recalcitrant micropollutant by microalgae. However, the specific impacts of carbon sources on the co-metabolism of antibiotics by microalgae remain insufficiently explored. In this study, transcriptomics, gene network analysis, extracellular polymeric substances (EPS), and enzymatic activity involved in co-metabolic pathways of norfloxacin (NFX), were systematically evaluated to investigate the underlying biological mechanisms involved in NFX co-metabolism by Chlorella pyrenoidosa.
View Article and Find Full Text PDFChemosphere
February 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Environ Res
January 2025
Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China. Electronic address:
The nitrogen removal performance, enzymatic activity, antioxidant response and metabolic pathway of Chlorella pyrenoidosa (C. pyrenoidosa) under different salinities have been investigated during the treatment of aquaculture wastewater. The growth, chlorophyll content and photosynthetic activity of C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!