This study explores the synthesis of two visible light active organic chromophore-based composites using naphthalene monoanhydride () and 1,7-dibromoperylene monoanhydride diester (). These chromophores feature favorable optical and electronic properties and polyaromatic skeletons with anhydride functionalities that facilitate π-π interactions between the chromophore and polymeric carbon nitride () or covalent connections of chromophores with NH groups of . Accordingly, heterogeneous chromophore- composite photocatalysts namely, and were prepared by adopting calcination (c) and composites and were prepared by physical adsorption (a) methods. prepared and composites exhibited H evolution rates (HER) of 1069 and 705 μmol h g, respectively, which are significantly higher than ex situ and composites with HER of 465 and 252 μmol h g, respectively. These rates are 10, 7, 4.8, and 2.5 times higher than the bulk-, indicating the potential of these composites for efficient photocatalytic H evolution. Surface area normalized HER enhancements were 3.8, 5.3, 6.6, and 4.2 times higher for , , , and respectively compared to bulk-. These composite photocatalysts exhibited excellent stabilities under prolonged photoirradiation, with H evolution consistently increasing with the light exposure time. Additionally, these metal-free heterogeneous composites demonstrated efficient photocatalytic activities towards oxidative amidation of aromatic aldehydes, with up to 80% product yields, establishing the prospects of combining homogeneous and heterogeneous entities in a metal-free active material in solar energy harvesting.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c11795DOI Listing

Publication Analysis

Top Keywords

efficient photocatalytic
12
naphthalene monoanhydride
8
composites efficient
8
metal-free heterogeneous
8
oxidative amidation
8
composite photocatalysts
8
times higher
8
composites
7
monoanhydride perylene
4
perylene composites
4

Similar Publications

Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.

View Article and Find Full Text PDF

With the development of industry, agriculture, and aquaculture, excessive ammonia nitrogen mainly involving ionic ammonia (NH) and molecular ammonia (NH) has inevitable access to the aquatic environment, posing a severe threat to water safety. Photocatalytic technology shows great advantages for ammonia nitrogen removal, such as its efficiency, reusability, low cost, and environmental friendliness. In this study, CP (g-CN/CoP) composite materials, which exhibited high-efficiency ammonia nitrogen removal, were synthesized through a simple self-assembly method.

View Article and Find Full Text PDF

Photocatalysis offers a powerful approach for water purification from toxic organics, hydrogen production, biosolids processing, and the conversion of CO into useful products. Further advancements in photocatalytic technologies depend on the development of novel, highly efficient catalysts and optimized synthesis methods. This study aimed to develop a laser synthesis technique for bismuth oxyhalide nanoparticles (NPs) as efficient and multifunctional photocatalysts.

View Article and Find Full Text PDF

Single-Atom Mo Supported by TiO for Photocatalytic Nitrogen Fixation.

Langmuir

December 2024

State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.

The challenge of achieving efficient photocatalysts for the fixation of ambient nitrogen to ammonia persists. The utilization efficiency of single-metal-atom catalysts leads to an increased number of active sites, while their distinctive geometrical and electronic characteristics contribute to enhancing the intrinsic activity of each individual site. In this study, we present a method using an organic molecule to assist in loading TiO with Mo single atoms for the purpose of photocatalytic nitrogen fixation.

View Article and Find Full Text PDF

Valorization of Selected Biomass-Derived Molecules on Leaves-Biotemplated TiO-g-CN Photocatalysts.

Biomimetics (Basel)

November 2024

Departamento de Química Orgánica, Instituto Químico para la Energía y el Medioambiente (IQUEMA), Universidad de Córdoba, E-14071 Córdoba, Spain.

Biotemplating technique allows the synthesis of catalysts, recreating the sophisticated structure of nature templates. In this work, some biotemplated TiO semiconductors were synthesized using leaves as templates. Then, g-CN was coupled to materials to later incorporate Pt on the surface or as dopant in the structure to evaluate the efficiency of the solids in two photocatalytic applications to valorize biomass: hydrogen production through glycerol photoreforming, and photoacetalization of cinnamaldehyde with 1,2-propanediol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!