Chlorophylls a and b (Chl a and b) are involved in light harvesting, photochemical reactions, and electron transfer reactions in plants and green algae. The core complexes of the photosystems (PSI and PSII) associate with Chl a, while the peripheral antenna complexes (LHCI and LHCII) bind Chls a and b. One of the final steps of Chl biosynthesis is the conversion of geranylgeranylated Chls (Chls) to phytylated Chls by geranylgeranyl reductase (GGR). Here, we isolated and characterized a pale green mutant of the green alga Chlamydomonas reinhardtii that was very photosensitive and was unable to grow photoautotrophically. This mutant has a 16-bp deletion in the LHL3 gene, which resulted in the loss of LHL3 and GGR and accumulated only Chls. The lhl3 mutant cells grown in the dark accumulated PSII and PSI proteins at 25-50% of WT levels, lacked PSII activity, and retained a decreased PSI activity. The PSII and PSI proteins were depleted to trace amounts in the mutant cells grown in light. In contrast, the accumulation of LHCI and LHCII was unaffected except for LHCA3. Our results suggest that the replacement of Chls with Chls strongly affects the structural and functional integrity of PSII and PSI complexes but their associating LHC complexes to a lesser extent. Affinity purification of HA-tagged LHL3 confirmed the formation of a stable LHL3-GGR complex, which is vital for GGR stability. The LHL3-GGR complex contained a small amount of PSI complex assembly factors, suggesting a putative coupling between Chl synthesis and PSI complex assembly.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.17071DOI Listing

Publication Analysis

Top Keywords

psii psi
12
lhl3 mutant
8
mutant green
8
green alga
8
alga chlamydomonas
8
chlamydomonas reinhardtii
8
lhci lhcii
8
chls chls
8
mutant cells
8
cells grown
8

Similar Publications

Estimation of light utilisation and antioxidative protection in an alpine plant species (Soldanella alpina L.) during the leaf life cycle at high elevation.

Physiol Plant

January 2025

Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à L'énergie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, Grenoble cedex 9, France.

Photosynthesis, electron transport to carbon assimilation, photorespiration and alternative electron transport, light absorption of the two photosystems, antioxidative protection and pigment contents were investigated in S. alpina leaves. S.

View Article and Find Full Text PDF

The natural Z-scheme of oxygenic photosynthesis efficiently drives electron transfer from photosystem II (PSII) to photosystem I (PSI) via an electron transport chain, despite the lower energy levels of PSII. Inspired by this sophisticated mechanism, we present a layered cascade bio-solar cell (CBSC) that emulates the Z-scheme. In this design, chlorophyll derivatives (Chl) act as PSI analogs, while bacteriochlorophyll derivatives (BChl) serve as PSII analogs in the active layer.

View Article and Find Full Text PDF

Exogenous 2,4-Epibrassinolide Alleviates Alkaline Stress in Cucumber by Modulating Photosynthetic Performance.

Plants (Basel)

December 2024

Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.

Brassinosteroids (BRs) are recognized for their ability to enhance plant salt tolerance. While considerable research has focused on their effects under neutral salt conditions, the mechanisms through which BRs regulate photosynthesis under alkaline salt stress are less well understood. This study investigates these mechanisms, examining plant growth, photosynthetic electron transport, gas exchange parameters, Calvin cycle dynamics, and the expression of key antioxidant and Calvin cycle genes under alkaline stress conditions induced by NaHCO.

View Article and Find Full Text PDF

Heterogeneous distribution of PSI and PSII in thick grana in shade chloroplasts is argued to hinder spillover of chlorophyll excitations from PSII to PSI. To examine this dogma, we measured fluorescence induction at 77K at 690 nm (PSII) and 760 nm (mostly PSI) in the leaf discs of Spinacia oleracea, Cucumis sativus and shade tolerant Alocasia odora, grown at high and low light, and quantified their spillover capacities. PSI fluorescence (FI) consists of the intrinsic PSI fluorescence (FIα) and fluorescence caused by excitations spilt over from PSII (FIβ).

View Article and Find Full Text PDF

Bio-inspired Catalyst-Modified Photocathode for Bias-Free Photoelectrochemical NADH Regeneration.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Cofactors such as nicotinamide adenine dinucleotide (NADH) and its phosphorylated form (NADPH) play a crucial role in natural enzyme-catalyzed reactions for the synthesis of chemicals. However, the stoichiometric supply of NADH for artificial synthetic processes is uneconomical. Here, inspired by the process of cofactor NADPH regeneration in photosystem I (PSI), catalyst-modified photocathodes are constructed on the surface of polythiophene-based semiconductors (PTTH) via self-assembly for photoelectrochemical catalytic NADH regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!