A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Solar-Adaptive Cooling Blocks Composed of Recycled Fabric. | LitMetric

Solar-Adaptive Cooling Blocks Composed of Recycled Fabric.

ACS Appl Mater Interfaces

Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon 38822, Republic of Korea.

Published: October 2024

Radiative cooling technologies have had a significant impact on advancing carbon neutrality efforts by significantly improving the passive cooling efficiency. The tandem of conduction and radiation enables solar-adaptive radiative cooling through the insulating effect of materials along with solar absorption, which affects the thermal state of materials and enhances radiative thermal transfer from the surface under solar irradiation. This enhancement is achieved by utilizing the porous polymeric structure of materials, which facilitates improved conduction pathways along with solar reflectance, while maintaining the effective emission of thermal radiation. In this particular scenario, blocks, which were made of recycled fibers, offer a great opportunity as solar-adaptive cooling materials, enabling their easy deployment for cooling applications. Herein, we have fabricated a porous block using fiber wastes that combines strong solar reflectance (92%) at the 1 μm region and high thermal infrared emittance (∼75%) at the 10 μm region. The combination of effective solar reflection and thermal infrared emission allows the fiber block to achieve a high cooling performance of approximately 68 W/m under solar irradiation. In addition, the fiber block works effectively for insulation during the night, thereby enhancing its heat retention capabilities. The economic and environmental advantages of the fiber block make it a cost-competitive and sustainable choice for near-market cooling technologies. This design is anticipated to expand the practical application range of passive cooling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c14431DOI Listing

Publication Analysis

Top Keywords

fiber block
12
solar-adaptive cooling
8
cooling
8
radiative cooling
8
cooling technologies
8
passive cooling
8
solar irradiation
8
solar reflectance
8
μm region
8
thermal infrared
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!