Synaptic-vesicle (SV) recruitment is thought to maintain reliable neurotransmitter release during high-frequency signaling. However, the mechanism underlying the SV reloading for sustained neurotransmission at central synapses remains unknown. To elucidate this, we performed direct observations of SV reloading and mobility at a single-vesicle level near the plasma membrane in cerebellar mossy fiber terminals using total internal reflection fluorescence microscopy, together with simultaneous recordings of membrane fusion by capacitance measurements. We found that actin disruption abolished the rapid SV recruitment and reduced sustained release. In contrast, induction of actin polymerization and stabilization did not affect vesicle recruitment and release, suggesting that the presence of actin filaments, rather than actin dynamics, was required for the rapid recruitment. Single-particle tracking experiments of quantum dot-labeled vesicles, which allows nanoscale resolution of vesicle mobility, revealed that actin disruption caused vesicles to diffuse more rapidly. Hidden Markov modeling with Bayesian inference revealed that SVs had two diffusion states under normal conditions: free-diffusing and trapped. After disruption of the actin filament, vesicles tended to have only the free-diffusing state. F-actin staining showed that actin filaments were localized outside the active zones (AZs) and surrounded some SV trajectories. Perturbation of SV mobility, possibly through interference with biomolecular condensates, also suggested that the restricted diffusion state determined the rate of SV recruitment. We propose that actin filaments confined SVs near the AZ to achieve rapid and efficient recruitment followed by priming and sustained synaptic transmission.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513904 | PMC |
http://dx.doi.org/10.1073/pnas.2402152121 | DOI Listing |
J Cell Biol
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
CNR Institute of Neuroscience, Vedano al Lambro, Italy.
Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research, Indian Institute of Science, Bangalore, Karnataka, India.
Background: F-actin plays crucial roles in establishment and maintenance of synapses including post synaptic density organization, facilitation of vesicle trafficking, anchoring of postsynaptic receptors, and involvement in translational machinery. Proteomic analysis of actin-interacting proteins revealed the interaction of PSD-95 with actin in synaptosomes from brain cortex of APP/PS1 mice. PSD-95 functions as a critical scaffold for the assembly of neurotransmitter receptors at the synapse, playing a pivotal role in regulating synaptic strength and plasticity.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFAndrology
January 2025
Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina-Universidad de Buenos Aires (UBA/CONICET), Buenos Aires, Argentina.
Background: Endocannabinoids like anandamide (AEA), among other lipids, are recognized signaling molecules that participate in reproductive events.
Objectives: Our aims were to characterize orphan G protein-coupled receptor (GPR55) presence; investigate GPR55 activation by AEA and determine GPR55 role in the bovine sperm function.
Materials And Methods: GPR55 presence was assessed by immunocytochemistry.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!