The development of X-ray free-electron lasers has enabled ultrafast X-ray diffraction (XRD) experiments, which are capable of resolving electronic and vibrational transitions and structural changes in molecules or capturing molecular movies. While time-resolved XRD has attracted more attention, the extraction of information from signals is challenging and requires theoretical support. In this work, we combined X-ray scattering theory and a trajectory surface hopping approach to resolve dynamical changes in the electronic structure of photoexcited molecules by studying the time evolution of electron density changes between electronic excited states and ground state. Using the pyrazine molecule as an example, we show that key features of reaction pathways can be identified, enabling the capture of structural changes associated with electronic transitions for a photoexcited molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02503DOI Listing

Publication Analysis

Top Keywords

electron density
8
density changes
8
excited states
8
structural changes
8
changes electronic
8
changes
5
tracking electron
4
changes excited
4
states computational
4
computational study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!