Transition metal sulfides stand as potential anode candidates for lithium-ion batteries offering high capacity, redox reversibility, and safety. However, cycling-induced volume variations and slow kinetics hinder their application. Here, CuFeS with a flower-ball nanosheet structure is synthesized via a hydrothermal method, enhancing electrolyte infiltration, Li transport, and cycle life. CuFeS exhibits a large initial discharge specific capacity of 532.4 mAh g at 500 mA g with 95.7% initial Coulombic efficiency, retaining an impressive 90.5% (481.6 mAh g) of its initial capacity after 300 cycles. Remarkably, at 2000 mA g for 700 cycles, it maintains a high specific capacity of 487.1 mAh g with an 89.4% capacity retention rate. Moreover, it maintains excellent reversibility at both high temperature (60 °C) and low temperature (-25 °C) and demonstrates excellent electrochemical performance even under high loading conditions. Consequently, CuFeS holds immense promise as a lithium-ion battery anode material, offering fast charging, safety, high capacity, and long life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02524 | DOI Listing |
Exp Brain Res
January 2025
Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China.
Vestibular dysfunction has been reported as a potential cause in adolescent idiopathic scoliosis (AIS). However, it remained unclear how stochastic galvanic vestibular stimulation (GVS) affected kinetic performance of patients with AIS. This study aimed to investigate the effect of stochastic GVS on ground reaction forces (GRF) measures during obstacle negotiation among patients with AIS.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, 2005 Huhu Rd, Shanghai, CHINA.
All-solid-state lithium metal batteries are regarded as next-generation devices for energy storage due to their safety and high energy density. The issues of lithium dendrites and poor mechanical compatibility with electrodes present the need for developing solid-state electrolytes with high stiffness and damping, but it is a contradictory relationship. Here, inspired by the superstructure of tooth enamel, we develop a composite solid-state electrolyte composed of amorphous ceramic nanotube arrays intertwined with solid polymer electrolytes.
View Article and Find Full Text PDFAnal Methods
November 2017
Materials Science Centre, Indian Institute of Technology, Kharagpur-721302, India.
Functionalized polymer membrane electrodes based multichannel sensor is used as an electronic tongue to monitor the drinking water (DW) quality simply by measuring the surface electric potential with respect to Ag/AgCl reference electrode in 1 mM aqueous KCl. Changes of minute concentration of dissolved minerals greatly affected the surface potential of the sensor. The three-channel sensor device (electronic tongue) is made by using three different functionalized polymer membrane electrodes, namely, phosphorylated hexadecyl trimethyl ammonium chloride modified polyvinyl alcohol-polyacrylic acid membrane; phosphorylated and crosslinked polyvinyl--ethylene membrane; phosphorylated and crosslinked polyvinyl alcohol membrane, as working electrodes and a Ag/AgCl reference electrode.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Cardiology, Xuzhou Central Hospital, No.199 Jiefang South Road, Quanshan District, Xuzhou, 221009, People's Republic of China.
Background: The aim of this study is to identify factors associated with the development of long-term severe tricuspid regurgitation (TR) following mitral valve replacement (MVR).
Methods: A retrospective analysis was conducted involving 308 patients who underwent single-valve MVR at Xuzhou Central Hospital between April 2017 and December 2022. Preoperative color Doppler ultrasound indicated that all patients had either no or mild to moderate tricuspid regurgitation.
Eur Arch Otorhinolaryngol
January 2025
Department of Audiovestibology, ASST dei Sette Laghi, Via Lazio, 21100, Varese, VA, Italy.
Purpose: Evaluate the feasibility and safety of a robotic electrode insertion in pediatric cochlear implantation and compare the results with manually inserted electrodes in the same subject.
Methods: Retrospective case series review of four children who underwent bilateral cochlear implantation with the same array: on one side, the array was inserted using the robot, while on the other side the array was inserted manually. Behavioural and electrophysiological measures were compared.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!