Background: Transforming growth factor beta receptor III (TGFBR3) has been shown to play a tumor-suppressive role in a variety of cancers. However, its role in papillary thyroid cancer (PTC) remains unknown.

Method: TGFBR3 expression levels in PTC were analyzed utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Edu, wound healing, and Transwell assays were used to evaluate cell proliferation, migration, and invasion. Transcriptome sequencing, quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR), and Western blotting were used to detect the underlying mechanism of TGFBR3 in PTC progression.

Result: This study demonstrated that TGFBR3 expression was significantly down-regulated in PTC compared to normal thyroid tissues. Low expression of TGFBR3 was associated with poor prognosis of patients with PTC. Furthermore, TGFBR3 expression positively correlated with thyroid differentiation score. In investigating the biological impact of TGFBR3 overexpression in PTC cell lines, we found that the proliferation, migration, and invasion of PTC cells were significantly inhibited in response to TGFBR3 overexpression. Moreover, we also demonstrated that overexpression of TGFBR3 inhibited the PI3K/AKT pathway and epithelial-mesenchymal transformation processes. Lastly, TGFBR3 expression was found to be involved in tumor immune infiltration, highlighting its potential influence on immune dynamics within the tumor microenvironment in PTC.

Conclusion: TGFBR3 plays a tumor-suppressive role in PTC progression by inhibiting the PI3K/AKT pathway and epithelial mesenchymal transformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11623029PMC
http://dx.doi.org/10.1530/EC-24-0270DOI Listing

Publication Analysis

Top Keywords

tgfbr3 expression
16
tgfbr3
12
pi3k/akt pathway
12
papillary thyroid
8
thyroid cancer
8
inhibiting pi3k/akt
8
tumor-suppressive role
8
ptc
8
proliferation migration
8
migration invasion
8

Similar Publications

Development of Liver-Targeting αβ Exosomes as Anti-TGF-β Nanocarriers for the Treatment of the Pre-Metastatic Niche.

Biology (Basel)

December 2024

Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, BC, Mexico.

Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αβ on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche.

View Article and Find Full Text PDF

Plasma secretory proteins are associated with various diseases, including aortic dissection (AD). However, current research on the correlation between AD and plasma protein levels is scarce or lacks specificity. This study aimed to explore plasma secretory proteins as potential biomarkers for AD.

View Article and Find Full Text PDF

Background: Precursor T-cell acute lymphoblastic leukemia (Pre-T ALL) is a malignant neoplastic disease in which T-cells proliferate in the bone marrow. Single-cell sequencing technology could identify characteristic cell types, facilitating the study of the therapeutic mechanisms in Pre-T ALL.

Methods: The single-cell sequencing data (scRNA-seq) of Pre-T ALL were obtained from public databases.

View Article and Find Full Text PDF

Background: Transforming growth factor beta receptor III (TGFBR3) has been shown to play a tumor-suppressive role in a variety of cancers. However, its role in papillary thyroid cancer (PTC) remains unknown.

Method: TGFBR3 expression levels in PTC were analyzed utilizing The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Altered expression pattern of immune response-related genes and isoforms in hypersensitivity pneumonitis lung fibroblasts.

Sci Rep

October 2024

Departamento de Investigación en Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 14080, Ciudad de México, México.

Hypersensitivity pneumonitis (HP) is an immune-mediated inflammatory interstitial lung disease that may evolve to pulmonary fibrosis, a progressive disorder with a poor prognosis characterized by fibroblast activation and extracellular matrix accumulation. In HP lung fibroblasts, the gene expression of proteins involved in the interaction with the immune response, their isoforms, and how they influence their phenotype have yet to be elucidated. We analyzed the expression and splicing variants of 16 target genes involved in the interaction between HP fibroblasts and immune signaling and evaluated possible correlations with clinical data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!