An ultra-low-complexity third-order weight-sharing trigonometric nonlinear equalizer (WS-TNLE) is proposed to eliminate nonlinear signal distortions in short-reach optical interconnects exceeding net 200 Gb/s/λ. By replacing the second- and third-order nonlinear terms in a third-order weight-sharing diagonally pruned Volterra nonlinear equalizer (WS-DP-VNLE) with cosine and sine terms, respectively, the required number of real-valued multiplications per symbol of the proposed third-order WS-TNLE is significantly reduced to the same value as the number of weight-sharing kernels. When transmitting probabilistically shaped 16-level pulse amplitude modulation (PS-PAM-16) signals at net rates ranging from 200.4 Gb/s to 300.4 Gb/s over a 1-km standard single-mode fiber (SSMF), the proposed third-order WS-TNLE requires the lowest number of real-valued multiplications per symbol, ranging from 10 to 44, which reduces the computational complexity by up to 96.2% and 52.4% compared to the third-order WS-DP-VNLE and WS-DP-absolute-term nonlinear equalizer (WS-DP-ATNLE), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.535047 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!