Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We demonstrate a novel, to our knowledge, approach for phase-resolved coherent 3D surface imaging that utilizes synthetic wavelength phase-based ranging and line-scan off-axis holography. Our proof-of-concept system employs an akinetic tunable laser to perform fast wavelength switching and a galvanometer mirror for slow-axis mechanical scanning. Quantitative depth measurements of an anodized aluminum plate and 3D-printed depth calibration targets and a printed circuit board are demonstrated. Analyses of both shot-noise limited system performance and speckle noise are also presented. The proof-of-concept system achieves micron-scale depth precision with a FOV of 12.8 mm × 34 mm and a 50 ms image acquisition time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.532480 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!