AI Article Synopsis

  • Hybrid carbon nanotube (CNT) sheets were created by combining CNTs with silver nanowires (AgNWs) and MXene to enhance their electromagnetic-interference (EMI) shielding properties.
  • The hybrid sheets were produced using ultrasonic mixing and vacuum filtration, with variations in the weight ratios of the added materials.
  • The final hybrid sheets showed significant improvements: EMI-shielding effectiveness increased by over 200%, and electrical conductivity improved by more than 1500%, although this also led to an increase in weight and thickness of the samples.

Article Abstract

Hybrid carbon nanotube (CNT) sheets were fabricated by mixing CNTs with silver nanowires (AgNWs) and MXene to study their electromagnetic-interference (EMI)-shielding properties. CNT/AgNW and CNT/MXene hybrid sheets were produced by ultrasonic homogenization and vacuum filtration, resulting in free-standing CNT sheets. Three different weight ratios of AgNW and MXene were added to the CNT dispersions to produce hybrid CNT sheets. Microstructure characterization was performed using scanning electron microscopy, and the Wiedemann-Franz law was used to characterize transport properties. The resulting hybrid sheets exhibited improved electrical conductivity, thermal conductivity, and EMI-shielding effectiveness compared to pristine CNT sheets. X-band EMI-shielding effectiveness improved by over 200%, while electrical conductivity improved by more than 1500% in the hybrid sheets due to a higher charge-carrier density and synergistic effects between nanomaterials. The addition of AgNW to CNT sheets resulted in a large improvement in electrical conductivity and EMI shielding; however, this may also result in increased weight and sample thickness. Similarly, the addition of MXene to CNT sheets may result in an increase in weight due to the presence of the denser MXene flakes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478732PMC
http://dx.doi.org/10.3390/nano14191587DOI Listing

Publication Analysis

Top Keywords

cnt sheets
24
hybrid sheets
12
electrical conductivity
12
sheets
10
improvement electrical
8
carbon nanotube
8
mxene cnt
8
emi-shielding effectiveness
8
cnt
7
mxene
5

Similar Publications

Oil recovery and heat transfer performance of polyurethane sponges coated with 3D carbon nano networks.

J Hazard Mater

December 2024

Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.

Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes.

View Article and Find Full Text PDF

Polyethyleneimine-assisted one-pot synthesis of Au nanodendrites on carbon nanotube sheet as an efficient SERS substrate.

Mikrochim Acta

January 2025

College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, 211816, Jiangsu, China.

A polyethyleneimine (PEI)-assisted simple and efficient one-pot hydrothermal reduction method is reported to prepare high-quality gold nanodendrites (AuNDs) on a carbon nanotube (CNT) sheet. We observed that the prepared AuNDs have a well-defined backbone-multiple branching structure. With the systematical investigation of the growth mechanism, it was found that the bromide (Br) ion concentration has an essential effect on the formation of AuNDs.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the impact of different carbon nanostructure reinforcements and nitinol shape memory alloy (SMA) wire on the vibration behavior of a five-layer sandwich plate with a foam core, aiming to optimize stiffness and weight for sensitive industries.
  • It highlights how various reinforcements like carbon nanotubes, nanorods, and graphene platelets can significantly enhance the mechanical properties, with graphene showing the most substantial improvement in Young's modulus.
  • The research also introduces a novel construction method for the five-layer model using a vacuum pump, offering a more efficient alternative to traditional manual methods and facilitating a thorough experimental examination of its properties.
View Article and Find Full Text PDF

Transparent heaters are gaining significant attention for applications such as antifog glass, smart windows, and smart farm greenhouses. A transparent heater basically consists of transparent conducting materials that serve as a heating area and contact pad electrode to apply power. To fabricate a transparent heater, materials with excellent light transmittance and low sheet resistance are required.

View Article and Find Full Text PDF

As a typical sulfur-containing volatile organic compound, dimethyl disulfide (DMDS) is known for its high toxicity and resistance to degradation, necessitating efficient control in environmental media. To address the limitations of biological treatment in degradation capacity, this study employs electro-stimulation to promote DMDS elimination by a porous polyaniline@carbon nanotube bioanode developed on graphite sheet (PANI@CNT/GS). Compared with the unmodified GS bioanode, the PANI@CNT/GS bioanode demonstrates significant advantages in biofilm activity, redox property, and DMDS degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!