Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study presents the development of flexible piezoelectric nanogenerators (PENGs) utilizing graphitic carbon nitride (g-CN) nanoflakes (CNNFs) and polyvinylidene fluoride (PVDF) composites fabricated via the direct ink writing (DIW) 3D printing method. A novel approach of synthesizing CNNFs using the ethanol exfoliation method was demonstrated, which significantly reduces preparation time and cost compared to traditional acid exfoliation. The CNNFs are incorporated into PVDFs at varying weight percentages (5, 7.5, 10, and 15 wt.%) to optimize the β-phase content and piezoelectric properties. Characterization techniques including XRD, FTIR, and FESEM confirm the successful synthesis and alignment of nanoflakes inside the PVDF matrix. The film with 7.5% CNNF achieves the highest performance, exhibiting a peak output voltage of approximately 6.5 V under a 45 N force. This study also explores the effects of UV light exposure. Under a UV light, the film exhibits an output voltage of 8 V, indicating the device's durability and potential for practical applications. The fabricated device showed significant voltage outputs during various human motions, confirming its suitability for wearable self-powered IoT applications. This work highlights the efficacy of the ethanol exfoliation method and the DIW printing technique in enhancing the performance of flexible PENGs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478031 | PMC |
http://dx.doi.org/10.3390/nano14191578 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!