Large-Scale High-Accuracy and High-Efficiency Phase Plate Machining.

Nanomaterials (Basel)

State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.

Published: September 2024

In this paper, multifunctional, multilevel phase plates of quartz substrate were efficiently prepared by using a newly developed polygon scanner-based femtosecond laser photolithography system combined with inductively coupled discharge plasma reactive-ion etching (ICP-RIE) technology. The femtosecond laser photolithography system can achieve a scanning speed of 5 m/s and a preparation efficiency of 15 cm/h while ensuring an overlay alignment accuracy of less than 100 nm and a writing resolution of 500 nm. The ICP-RIE technology can control the etching depth error within ±5 nm and the mask-to-mask edge error is less than 1 μm. An 8-level Fresnel lens phase plate with a focal length of 20 mm and an 8-level Fresnel axicon phase plate with a cone angle of 5° were demonstrated. The diffraction efficiency was greater than 93%, and their performance was tested for focusing and glass cutting, respectively. Combined with the high-speed femtosecond laser photolithography system's infinite field-of-view (IFOV) processing capability, the one-time direct writing preparation of phase plate masks of different sizes was realized on a 6-inch wafer. This is expected to reduce the production cost of quartz substrate diffractive optical elements and promote their customized mass production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478046PMC
http://dx.doi.org/10.3390/nano14191563DOI Listing

Publication Analysis

Top Keywords

phase plate
16
femtosecond laser
12
laser photolithography
12
quartz substrate
8
photolithography system
8
icp-rie technology
8
8-level fresnel
8
phase
5
large-scale high-accuracy
4
high-accuracy high-efficiency
4

Similar Publications

This study presents a new highly sensitive and specific time-resolved fluoroimmunoassay (TRFIA) for the measurement of trace amounts of the urinary 8-hydroxy-2`-deoxyguanosine (8-OHdG) which is a biomarker for oxidative stress on DNA. The assay relied on a competitive binding approach and a mouse monoclonal antibody which recognized 8-OHdG with high specificity. In this assay, 8-OHdG conjugated with bovine serum albumin protein (8-OHdG-BSA) was employed as a solid phase antigen.

View Article and Find Full Text PDF

Twin block appliances are commonly used to treat skeletal class II malocclusion. However, many adverse effects, such as lower incisor protrusion and a bulky nature, can be observed. To overcome these effects, a modified twin block was designed, which uses vacuum-formed hard plates (VFPs) instead of acrylic plates.

View Article and Find Full Text PDF

Heterotypic spheroids as a strategy for 3D culture of cryopreserved primary human hepatocytes in stirred-tank systems.

SLAS Discov

January 2025

iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12 2781-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. Republica, 2780-157, Oeiras, Portugal. Electronic address:

Primary human hepatocytes (PHHs) are the preferred cell source to address liver function. Despite originating from the native tissue, one of the bottlenecks when using primary material is the donor-to-donor variability. Cryopreserved PHHs offer a high number of cells from the same donor and standardization of cell isolation and cryopreservation procedures, mitigating some of the inter-donor variability.

View Article and Find Full Text PDF

The challenge of imaging low-density objects in an electron microscope without causing beam damage is significant in modern transmission electron microscopy. This is especially true for life science imaging, where the sample, rather than the instrument, still determines the resolution limit. Here, we explore whether we have to accept this or can progress further in this area.

View Article and Find Full Text PDF

Experimental arrangement to study the impact of atmospheric turbulence on user-defined beams.

Rev Sci Instrum

January 2025

Applied and Adaptive Optics Laboratory, Department of Physics, Indian Institute of Space Science and Technology, Thiruvananthapuram 695547, Kerala, India.

In the present work, we propose an experimental setup to investigate the effect of atmospheric turbulence on user-defined beams. The user-defined beams were formed by writing reconfigurable patterns on a spatial light modulator, allowing the impact of atmospheric turbulence to be investigated simultaneously and in real time. The programmable controllability provides several flexibilities to the system, such as the ability to create different beam types simultaneously, control the separation between different beams, compensate for aberrations, and easily switch between different beam types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!