Photodynamic therapy (PDT) is a clinically approved, non-invasive therapy currently used for several solid tumors, triggering cell death through the generation of reactive oxygen species (ROS). However, the hydrophobic nature of most of the photosensitizers used, such as chlorins, limits the overall effectiveness of PDT. To address this limitation, the use of nanocarriers seems to be a powerful approach. From this perspective, we have recently developed water-soluble and biocompatible, fluorescent, organic nanoparticles (FONPs) functionalized with purpurin-18 and its derivative, chlorin p6 (Cp6), as new PDT agents. In this study, we aimed to investigate the induced cell death mechanism mediated by these functionalized nanoparticles after PDT photoactivation. Our results show strong phototoxic effects of the FONPs[Cp6], mediated by intracellular ROS generation, and subcellular localization in HCT116 and HT-29 human colorectal cancer (CRC) cells. Additionally, we proved that, post-PDT, the FONPs[Cp6] induce apoptosis via the intrinsic mitochondrial pathway, as shown by the significant upregulation of the Bax/Bcl-2 ratio, the activation of caspases 9, 3, and 7, leading poly-ADP-ribose polymerase (PARP-1) cleavage, and DNA fragmentation. Our work demonstrates the photodynamic activity of these nanoparticles, making them promising candidates for the PDT treatment of CRC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11478336 | PMC |
http://dx.doi.org/10.3390/nano14191557 | DOI Listing |
Biopolymers
January 2025
Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey.
Cartilage damage resulting from trauma demonstrates a poor capacity for repair due to its avascular nature. Cartilage tissue engineering offers a unique therapeutic option for cartilage recovery. In this study, methylcellulose (MC)/gelatin (GEL) hydrogels (MC10G20, MC12.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica Universidade de Santiago de Compostela, 15705, Spain.
This article highlights the recent work by Wang, Qi, (, 2024, https://doi.org/10.1039/D4NH00400K) on the full-color peptide-based fluorescent nanomaterials assembled under the control of amino acid doping.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, China.
Gold nanoclusters (AuNCs) have garnered significant attention in biomedical applications, particularly in biosensing, cancer therapy, and imaging, due to their unique optical property, good biocompatibility, and distinct bioactivity. Understanding the cellular uptake behavior of AuNCs is critical to improve the efficacy of their applications, whose mechanism has not been adequately validated. In this work, we synthesized AuNCs with varying surface modifications to quantify the exact law of surface charge on the cellular uptake of AuNCs in a multidimensional manner by using 3D multicellular tumor spheroids of both HeLa cells and MCF-7 cells as the model system.
View Article and Find Full Text PDFPharmaceutics
November 2024
iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal.
: The development of innovative materials for disease diagnostics and therapeutics is a fast-growing area of scientific research. In this work, we report the development of innovative hydrogels incorporating carbon dots (Cdots) for bioimaging purposes. : The Cdots were prepared using a sustainable and low-cost process, starting with an underused fiber from the Brazilian semiarid region.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!