A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Elucidating Heterogeneous Li Insertion Using Single-Crystalline and Freestanding Layered Oxide Thin Film. | LitMetric

AI Article Synopsis

  • The study focuses on how interfacial ion insertion affects the performance of lithium-ion batteries, particularly in two-dimensional layered-oxide particles.
  • The research reveals that the varying insertion rates across channels are influenced by unclear crystal orientation and lithium diffusion lengths, making it challenging to understand the activation of insertion channels.
  • Using a specially fabricated single-crystal thin film, the researchers found heterogeneity in lithium concentration during insertion, which worsens with higher current density, offering essential insights for improving battery design and longevity.

Article Abstract

The kinetics of interfacial ion insertion govern the uniformity of electrochemical reactions, playing a crucial role in lithium-ion battery performance. In two-dimensional lithium-conducting layered-oxide battery particles, variation in insertion rates across insertion channels remains unclear due to poorly defined crystal orientation at the solid-liquid interface and solid-state-lithium-diffusion length. This ambiguity complicates understanding inhomogeneous lithium-insertion channels activation. A systematic study requires crystallographically predefined interfaces and in situ lithium-concentration mapping. Here, we fabricated a freestanding, (104)-oriented-LiNiMnCoO single-crystal thin film using dissolution-induced release and performed in situ scanning-transmission-X-ray-microscopy to spatially resolve lithium-insertion at well-defined-interfaces. We observed heterogeneous lithium-concentration evolution due to channel-by-channel insertion rate variation, despite the potential for homogeneous lithium distribution via a solid-solution-phase at equilibrium in NMC111. Increasing current density exacerbates this heterogeneity, highlighting channel-by-channel variation. Our findings provide critical insights into battery electrode utilization and lifetime management, potentially guiding the design of more efficient and durable lithium-ion batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c04129DOI Listing

Publication Analysis

Top Keywords

thin film
8
insertion
5
elucidating heterogeneous
4
heterogeneous insertion
4
insertion single-crystalline
4
single-crystalline freestanding
4
freestanding layered
4
layered oxide
4
oxide thin
4
film kinetics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!