Elevated Porcupine Disrupts Lipid Metabolism and Promotes Inflammatory Response in MASLD.

Liver Int

Department of Pharmacology and School of Basic Medicine Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.

Published: October 2024

AI Article Synopsis

  • Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common condition linked to serious liver issues, with high serum levels of palmitic acid (PA) but unclear connections between PA and MASLD development.
  • The study utilized advanced methods like gene expression analysis and animal models to investigate the role of the protein Porcupine in MASLD, finding that PA induces Porcupine production leading to inflammation and altered lipid metabolism.
  • Results indicate that targeting Porcupine with an inhibitor called Wnt974 can reduce lipid buildup and inflammation in the liver, suggesting Porcupine as a potential therapeutic target for MASLD.

Article Abstract

Background And Aims: Metabolic dysfunction-associated steatotic liver disease (MASLD) presents a high incidence globally and is a major cause of cirrhosis and hepatocellular carcinoma, lacking of efficient interventions. Patients with MASLD exhibit exceeded serum levels of palmitic acid (PA). However, the association between PA and MASLD remains obscure.

Methods: Gene expression omnibus dataset analysis, western blotting, mRNA-sequencing, RT-qPCR, a click chemistry-immunoprecipitation-immunofluorescence system, ELISA, lipid extraction and UHPLC-MS/MS analysis, CyTOF mass cytometry, gene knockdown via lentivirus-mediated shRNA, and high-fat methionine and choline-deficient diet-fed WT and db/db mice models were used to reveal the expression and functions of Porcupine in MASLD development both in vitro and in vivo.

Results: Our findings show that PA, as a crucial substrate for protein palmitoylation, induced the expression of palmitoyltransferase Porcupine in a time-dependent manner. This induction was closely associated with dysregulated lipid metabolism and stimulated inflammatory response observed in vitro. Porcupine protein levels were significantly increased in liver tissues from both MASLD mice models, which was predominantly localised in lipid droplet-rich hepatocytes. Pharmacological inhibition of Porcupine by Wnt974 markedly ameliorated the aberrant lipid accumulation and inflammatory response in mouse livers. Furthermore, increased Porcupine positively correlated with CD36 at protein levels, and its inhibition or knockdown decreased CD36 protein levels via mechanisms irrelevant to transcriptional regulation, but primarily dependent on protein palmitoylation.

Conclusions: The current study reveals that PA-induced Porcupine disrupts lipid metabolism and promotes inflammatory response during MASLD development, which can be ameliorated by the Porcupine inhibitor Wnt974. Therefore, Porcupine may be a potential pharmacological target for the treatment of MASLD.

Download full-text PDF

Source
http://dx.doi.org/10.1111/liv.16130DOI Listing

Publication Analysis

Top Keywords

inflammatory response
16
lipid metabolism
12
protein levels
12
porcupine disrupts
8
disrupts lipid
8
metabolism promotes
8
promotes inflammatory
8
masld
8
response masld
8
mice models
8

Similar Publications

Introduction: Inflammation plays a role in coronavirus disease 2019 (COVID-19) pathophysiology and anti-inflammatory drugs may help reduce the disease severity. Levamisole is an anthelmintic drug with immunomodulatory and possible antiviral effects. This study aimed to evaluate the role of levamisole in the treatment of patients with COVID-19.

View Article and Find Full Text PDF

Introduction: Hemoperfusion (HP), a blood filtration method targeting the removal of toxins and inflammatory elements, was investigated in this study. The objective was to present the observations in four individuals with confirmed COVID-19 who underwent several rounds of HP utilizing the HA330 cartridge at a hospital in Indonesia.

Case Studies: We report four cases of COVID-19 patients who underwent HP.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Metabolic rewiring underlies effective macrophages defense to respond disease microenvironment. However, the underlying mechanisms driving metabolic rewiring to enhance macrophage effector functions remain unclear. Here, we demonstrated that the metabolic reprogramming in inflammatory macrophages depended on the acetylation of CLYBL, a citramalyl-CoA lyase, at lysine 154 (K154), and blocking CLYBL-K154 acetylation restricted the release of pro-inflammatory factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!