Functional Evaluation of Niosomes Utilizing Surfactants in Nanomedicine Applications.

Int J Nanomedicine

Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130033, People's Republic of China.

Published: October 2024

Niosomes are key nanocarriers composed of bilayer vesicles formed by non-ionic surfactants and cholesterol, offering advantages such as high physicochemical stability, biodegradability, cost-effectiveness, and low toxicity. This review discusses their significant role in drug delivery, including applications in anticancer therapy and vaccine delivery. It also highlights the impact of non-ionic surfactants on niosome formation, drug delivery pathways, and protein corona formation-a relatively underexplored topic. Furthermore, the application of artificial intelligence in optimizing niosome design and functionality is examined. Future research directions include enhancing formulation techniques, expanding application scopes, and integrating advanced technologies. This review provides comprehensive insights and practical guidance for advancing niosome-based drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472738PMC
http://dx.doi.org/10.2147/IJN.S480639DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
non-ionic surfactants
8
functional evaluation
4
evaluation niosomes
4
niosomes utilizing
4
utilizing surfactants
4
surfactants nanomedicine
4
nanomedicine applications
4
applications niosomes
4
niosomes key
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Alnylam Pharmaceuticals, Cambridge, MA, USA.

Background: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.

View Article and Find Full Text PDF

Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule-binding domains in the intracellular aggregation of Tau protein.

Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti-tau VHHs.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Shaperon Inc., Seoul, Korea, Republic of (South).

Background: Previously, we demonstrated therapeutic benefits following intraperitoneal delivery of the TGR5 agonist HY209 in 5xFAD, a transgenic mouse model of Alzheimer's Disease (AD). Given the desirability of a more acceptable administration route for prolonged AD treatment, we assessed the efficacy of HY209 via oral delivery. This study aims to elucidate the therapeutic potential of NuCerin, an oral formulation of HY209, in the aforementioned AD model, while simultaneously identifying potential blood biomarkers indicative of NuCerin's therapeutic action.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

NA, Charlottesville, VA, USA.

Preclinical Alzheimer's prevention trials require a multi-year commitment from diverse, cognitively unimpaired individuals willing to receive biomarker results of confirmed Alzheimer's pathology and possible ApoE4 status. Participants learn new terms such as ARIA, edema and microhemorrhage and undergo numerous MRI scans for safety monitoring. They take quarterly composite Alzheimer's assessments that are anxiety-provoking and highlight weaknesses which may have been unrecognized in daily life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!