Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: This study assessed an artificial intelligence (AI) model's performance in predicting elevated brain natriuretic peptide (BNP) levels from chest radiograms and its effect on diagnostic performance among healthcare professionals.
Methods And Results: Patients who underwent chest radiography and BNP testing on the same day were included. Data were sourced from two hospitals: one for model development, and the other for external testing. Two final ensemble models were developed to predict elevated BNP levels of ≥ 200 pg/mL and ≥ 100 pg/mL, respectively. Humans were evaluated to predict elevated BNP levels, followed by the same test, referring to the AI model's predictions. A total of 8390 images were collected for model creation, and 1713 images, for tests. The AI model achieved an accuracy of 0.855, precision of 0.873, sensitivity of 0.827, specificity of 0.882, f1 score of 0.850, and receiver-operating-characteristics area-under-curve of 0.929. The accuracy of the testing by 35 participants significantly improved from 0.708 ± 0.049 to 0.829 ± 0.069 ( < 0.001) with the AI assistance (an accuracy of 0.920). Without the AI assistance, the accuracy of the veterans in the medical career was higher than that of early-career professionals (0.728 ± 0.051 vs. 0.692 ± 0.042, = 0.030); however, with the AI assistance, the accuracy of the early-career professionals was rather higher than that of the veterans (0.851 ± 0.074 vs. 0.803 ± 0.054, = 0.033).
Conclusion: The AI model can predict elevated BNP levels from chest radiograms and has the potential to improve human performance. The gap in utilizing new tools represents one of the emerging issues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472749 | PMC |
http://dx.doi.org/10.1093/ehjimp/qyae064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!