The cost-effective production of sophorolipids (SLs) using agro-industrial waste represents a significant advancement in sustainable practices within the food industry. Sophorolipids, known for their excellent emulsifying and antimicrobial properties, offer a promising natural alternative to synthetic preservatives, which can pose health and environmental risks. This study aims to critically assess the strategies for producing sophorolipids from agro-industrial waste, with a focus on their implications for improving food safety and quality. By integrating techno-economic analysis (TEA) and life cycle assessment (LCA), the review provides a comprehensive evaluation of the effectiveness, feasibility, and sustainability of these methods. The scientific importance of this research lies in its potential to enhance waste management practices and promote eco-friendly food preservation solutions, contributing to the development of safer and more sustainable industrial processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471523 | PMC |
http://dx.doi.org/10.1016/j.crmicr.2024.100275 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Biofuel Laboratory, Department of Energy, Tezpur University, Assam, 784028, India.
Agro-processing industries generate a substantial quantity of biomass wastes. Conversion of these wastes into valuable material could be profitable considering both environmental and economic aspects. Among various biomass conversion methods, hydrothermal conversion can be used for co-production of biofuel and other valuable materials like carbon quantum dots (CQDs) and activated carbons.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFSci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Department of Physics, Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
The Silway River has historically failed to meet safe fecal coliform levels due to improper waste disposal. The river mouth is located in General Santos City, the tuna capital of the Philippines and a leading producer of hogs, cattle, and poultry. The buildup of contaminants due to direct discharge of waste from chicken farms and existing water quality conditions has led to higher fecal matter in the Silway River.
View Article and Find Full Text PDFFront Chem
December 2024
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
When processing lucuma (), waste such as shells and seeds is generated, which is a source of bioactive compounds. Recently, lucuma seed (LS), especially its oily fraction, has been studied for containing phytosterols and tocopherols, powerful antioxidants with health benefits. This study proposes lucuma seed oil (LSO) extraction using supercritical fluid (SCF) to improve the quality of the extract and minimize the environmental impact.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!