AI Article Synopsis

Article Abstract

The vastly spreading COVID-19 pneumonia is caused by SARS-CoV-2. Lymphopenia and cytokine levels are tightly associated with disease severity. However, virus-induced immune dysregulation at cellular and molecular levels remains largely undefined. Here, the leukocytes in the pleural effusion, sputum, and peripheral blood biopsies from severe and mild patients were analyzed at single-cell resolution. Drastic T cell hyperactivation accompanying elevated T cell exhaustion was observed, predominantly in pleural effusion. The mechanistic investigation identified a group of CD14 monocytes and macrophages highly expressing and in the biopsies from severe patients, suggesting M2 macrophage polarization. These M2-like cells exhibited up-regulated (M-CSF), and signaling pathways. Further, cell type specific dysregulation of transposable elements was observed in Severe COVID-19 patients. Together, our results suggest that severe SARS-CoV-2 infection causes immune dysregulation by inducing M2 polarization and subsequent T cell exhaustion. This study improves our understanding of COVID-19 pathogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471606PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e38688DOI Listing

Publication Analysis

Top Keywords

transposable elements
8
severe covid-19
8
covid-19 patients
8
immune dysregulation
8
pleural effusion
8
biopsies severe
8
cell exhaustion
8
cell
5
severe
5
single-cell analysis
4

Similar Publications

High-quality genome of Firmiana hainanensis provides insights into the evolution of Malvaceae subfamilies and the mechanism of their wood density formation.

J Genet Genomics

December 2024

Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Key Lab of Plant factory for Plant Factory Generation-Adding Breeding of Ministry of Agriculture and Rural Affairs, the Advanced Seed Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Hainan Institute of Zhejiang University, Sanya, Hainan 572025, China. Electronic address:

Article Synopsis
  • The Malvaceae family, the largest in the order Malvales, has nine subfamilies, with many species in the Firmiana genus being globally vulnerable and lacking genomic research.
  • A chromosome-level genome assembly for Firmiana hainanensis reveals it has 40 chromosomes and is closely related to Durio zibethinus, diverging around 21 million years ago, with significant events in their evolutionary histories.
  • The study highlights how changes in chromosome numbers and genome sizes, particularly influenced by repetitive elements and specific gene contractions, can impact traits like wood density in Malvaceae species.
View Article and Find Full Text PDF

Heat stress affects various components of photosynthetic machinery of which Rubisco activation inhibition due to heat sensitive Rubisco activase (RCA) is the most prominent. Detailed comparison of RCA coding genes identified a tandem duplication event in the grass family lineage where the duplicated genes showed very different evolutionary pattern. One of the two genes showed high level of sequence conservation whereas the second copy, although present only 1.

View Article and Find Full Text PDF

Genomic characteristics and genetic manipulation of the marine yeast Scheffersomyces spartinae.

Appl Microbiol Biotechnol

December 2024

National Key Laboratory of Biobased Transportation Fuel Technology, Ocean College, Zhejiang University, Hangzhou, 310027, China.

The halotolerant yeast Scheffersomyces spartinae, commonly found in marine environments, holds significant potential for various industrial applications. Despite this, its genetic characteristics have been relatively underexplored. In this study, we isolated a strain of S.

View Article and Find Full Text PDF

Summary: Transposable elements (TEs), commonly referred to as "mobile elements," constitute DNA segments capable of relocating within a genome. Initially disregarded as "junk DNA" devoid of specific functionality, it has become evident that TEs have diverse influences on an organism's biology and health. The impact of these elements varies according to their location, classification, and their effects on specific genes or regulatory components.

View Article and Find Full Text PDF

GenomeDelta: detecting recent transposable element invasions without repeat library.

Genome Biol

December 2024

Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.

We present GenomeDelta, a novel tool for identifying sample-specific sequences, such as recent transposable element (TE) invasions, without requiring a repeat library. GenomeDelta compares high-quality assemblies with short-read data to detect sequences absent from the short reads. It is applicable to both model and non-model organisms and can identify recent TE invasions, spatially heterogeneous sequences, viral insertions, and hotizontal gene transfers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!