Integrating machine learning to advance epitope mapping.

Front Immunol

Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.

Published: October 2024

AI Article Synopsis

  • * Various experimental methods like X-ray crystallography and peptide arrays are used to map these epitopes, although they differ in accuracy and cost.
  • * The review emphasizes the role of machine learning in enhancing epitope prediction, addressing challenges like polyreactive antibodies, and refining therapeutic designs for better effectiveness.

Article Abstract

Identifying epitopes, or the segments of a protein that bind to antibodies, is critical for the development of a variety of immunotherapeutics and diagnostics. In vaccine design, the intent is to identify the minimal epitope of an antigen that can elicit an immune response and avoid off-target effects. For prognostics and diagnostics, the epitope-antibody interaction is exploited to measure antigens associated with disease outcomes. Experimental methods such as X-ray crystallography, cryo-electron microscopy, and peptide arrays are used widely to map epitopes but vary in accuracy, throughput, cost, and feasibility. By comparing machine learning epitope mapping tools, we discuss the importance of data selection, feature design, and algorithm choice in determining the specificity and prediction accuracy of an algorithm. This review discusses limitations of current methods and the potential for machine learning to deepen interpretation and increase feasibility of these methods. We also propose how machine learning can be employed to refine epitope prediction to address the apparent promiscuity of polyreactive antibodies and the challenge of defining conformational epitopes. We highlight the impact of machine learning on our current understanding of epitopes and its potential to guide the design of therapeutic interventions with more predictable outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471525PMC
http://dx.doi.org/10.3389/fimmu.2024.1463931DOI Listing

Publication Analysis

Top Keywords

machine learning
20
epitope mapping
8
learning
5
integrating machine
4
learning advance
4
epitope
4
advance epitope
4
mapping identifying
4
epitopes
4
identifying epitopes
4

Similar Publications

Background: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machine learning (ML) to derive and validate a predictive model for LDD among children presenting with diarrhea to health facilities.

Methods: LDD was defined as a diarrhea episode lasting ≥ 7 days.

View Article and Find Full Text PDF

Background: Considering the disruptive potential of AI technology, its current and future impact in healthcare, as well as healthcare professionals' lack of training in how to use it, the paper summarizes how to approach the challenges of AI from an ethical and legal perspective. It concludes with suggestions for improvements to help healthcare professionals better navigate the AI wave.

Methods: We analyzed the literature that specifically discusses ethics and law related to the development and implementation of AI in healthcare as well as relevant normative documents that pertain to both ethical and legal issues.

View Article and Find Full Text PDF

Background: Complete Cytoreduction (CC) in ovarian cancer (OC) has been associated with better outcomes. Outcomes after CC have a multifactorial and interrelated cause that may not be predictable by conventional statistical methods. Artificial intelligence (AI) may be more accurate in predicting outcomes.

View Article and Find Full Text PDF

Prediction and unsupervised clustering of fertility intention among migrant workers based on machine learning: a cross-sectional survey from Henan, China.

BMC Public Health

January 2025

Department of Health Management of Public Health, College of Public Health, Zhengzhou University, 100 Kexue Road, Gaoxin district, Zhengzhou, Henan, 450001, China.

Background: Although China has implemented multiple policies to encourage childbirth, the results have been underwhelming. Migrant workers account for a considerable proportion of China's population, most of whom are of childbearing age. However, few articles focus on their fertility intentions.

View Article and Find Full Text PDF

Preeclampsia (PE) is a major pregnancy-specific cardiovascular complication posing latent life-threatening risks to mothers and neonates. The contribution of immune dysregulation to PE is not fully understood, highlighting the need to explore molecular markers and their relationship with immune infiltration to potentially inform therapeutic strategies. We used bioinformatics tools to analyze gene expression data from the Gene Expression Omnibus (GEO) database using the GEOquery package in R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!