Osteoarthritis (OA) remains a challenging degenerative joint disease, largely associated with chondrocyte apoptosis during its development. Preserving chondrocytes stands as a promising strategy for OA treatment. Rapamycin (RP) exhibits chondrocyte protection by fostering autophagy. Nevertheless, the swift clearance of intra-articular injections and the dense cartilage extracellular matrix (ECM) hinder RP from effectively reaching chondrocytes. Herein, we developed a "two-stage" drug delivery system (RP@PEG-PA@P-Lipo). This system comprises primary nanoparticles (P-Lipo), liposomes modified with a collagen II targeting peptide (WYRGRLC), and secondary nanoparticles (RP@PEG-PA), PEG-modified PAMAM encapsulating rapamycin (RP). RP@PEG-PA@P-Lipo demonstrates adherence to the cartilage surface with WYRGRLC, substantially prolonging retention within the joint cavity. Subsequently, released RP@PEG-PA can effectively penetrate the cartilage and deliver RP to chondrocytes through small size and charge-driven forces. and experiments corroborate its notable therapeutic effects on OA. This study holds promise in offering a novel approach for clinical drug delivery and OA treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11471676PMC
http://dx.doi.org/10.1016/j.mtbio.2024.101279DOI Listing

Publication Analysis

Top Keywords

drug delivery
12
delivery system
8
enhancing retention
4
retention permeation
4
permeation rapamycin
4
rapamycin osteoarthritis
4
osteoarthritis therapy
4
therapy two-stage
4
two-stage drug
4
system osteoarthritis
4

Similar Publications

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is among the most challenging malignant brain tumors, making the development of new treatment strategies highly necessary. Glioma stem cells (GSCs) markedly contribute to drug resistance, radiation resistance, and tumor recurrence in GBM. The therapeutic potential of nanomaterials targeting GSCs in GBM urgently needs to be explored.

View Article and Find Full Text PDF

Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.

View Article and Find Full Text PDF

Brain metastasis and primary glioblastoma multiforme represent the most common and lethal malignant brain tumors. Its median survival time is typically less than a year after diagnosis. One of the major challenges in treating these cancers is the efficiency of the transport of drugs to the central nervous system.

View Article and Find Full Text PDF

Rapamycin analogs are approved by the FDA for breast and renal cancer treatment. Hence, the possibility of nanoparticle-mediated delivery of Rapamycin could be examined. In the present study, PEGylated Gold-core shell iron oxide nanoparticles were used for the targeted delivery of Rapamycin, and R-Au-IONPs were formulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!