Magnesium batteries have emerged as one of the considerable choices for next-generation batteries. Oxide compounds have attracted great attention as cathodes for magnesium batteries because of their high output voltages and ease of synthesis. However, a majority of the reported results are based on metastable nanoscale oxide materials. This study puts forward a thermodynamically stable layer-structured oxide KMnO with an enlarged lattice spacing as a model cathode material employing optimized electrolytes, enabling Mg intercalation into the KMnO framework in a real magnesium battery directly using Mg foil as the anode. First-principles calculations implied that the enlarged layer spacing could decrease the migration energy barrier of Mg in the layered oxide. This work can pave the way to understanding the fundamental intercalation behavior of Mg in magnesium batteries.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11472281 | PMC |
http://dx.doi.org/10.1039/d4ra03923h | DOI Listing |
Nano Lett
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.
View Article and Find Full Text PDFJ Mol Graph Model
December 2024
Department of computer Engineering, College of Computer Science, King Khalid University, Main Campus, Al farah Abha, 61421, Kingdom of Saudi Arabia.
The DFT was employed to assess the ion-storage capability of an irida-graphene monolayer (IGM) in Mg-ion batteries (MIBs). The IGM had a mechanically stable structure. The IGM also exhibited great conductance based on the DOS calculations.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Physics, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
Magnesium-ion batteries have the potential to replace commercially available Li-ion batteries in the future due to their lower cost and sustainability. On the other hand, magnesium ions are dendrite-free and offer greater energy density and volumetric capacity due to their divalent nature. Conventional electrode materials face challenges in capturing magnesium ions.
View Article and Find Full Text PDFChimia (Aarau)
December 2024
Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine.
In this article, we provide an overview of hydrogen storage materials, taking our previous results as examples. Towards the end of the paper, we present a case study in order to highlight the effects of substitutional alloying, compositional additives, and nanostructuring on the hydrogen sorption properties of magnesium-based intermetallics. Specifically, partial substitution of Mg by Li and d-elements by p-elements leads to structural changes, inducing disorder and the formation of high-entropy alloys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!