Development of Imidazo[1,2-]pyridines Containing Sulfonyl Piperazines as Potential Antivirals against Tomato Spotted Wilt Virus.

J Agric Food Chem

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.

Published: October 2024

Mesoionic structures have become important advancements in recent agrochemical design. However, their potential beyond serving as excellent insecticides remains unexplored with limited reports available. Herein, a series of imidazo[1,2-]pyridine mesoionics were developed by structurally incorporating sulfonyl piperazine moieties into imidazo[1,2-]pyridines. Many of the obtained derivatives demonstrated bioactivity against tomato spotted wilt virus (TSWV) in bioassays. In particular, compound , identified via three-dimensional quantitative structure activity relation models, displayed encouraging protective performance (half-maximal effect concentration = 252 μg/mL) compared to the positive controls ningnanmycin (332 μg/mL) and vanisulfane (523 μg/mL). Through defense enzyme assays, real-time quantitative polymerase chain reaction, and proteomics analysis, was identified as a plant immunomodulator that promotes defense enzyme activity and the mediates oxidative phosphorylation pathway, enabling plants to resist TSWV. We expect this study to help expand the possibilities of mesoionic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c04369DOI Listing

Publication Analysis

Top Keywords

tomato spotted
8
spotted wilt
8
wilt virus
8
defense enzyme
8
development imidazo[12-]pyridines
4
imidazo[12-]pyridines sulfonyl
4
sulfonyl piperazines
4
piperazines potential
4
potential antivirals
4
antivirals tomato
4

Similar Publications

Two phylogenetically unrelated viruses transmitted by different insect vectors, tomato spotted wilt virus (TSWV) and tomato yellow leaf curl virus (TYLCV), are major threats to tomato and other vegetable production. Although co-infections of TSWV and TYLCV on the same host plant have been reported on numerous occasions, there is still lack of research attempting to elucidate the mechanisms underlying the relationship between two viruses when they coexist in the same tomato or other plants. After assessing the effect of four TSWV-coded proteins on suppressing TYLCV in TSWV N transgenic Nicotiana benthamiana seedlings, the TSWV N protein proved to be effective in reducing TYLCV quantity and viral symptoms.

View Article and Find Full Text PDF

Bacillus endophytes for sustainable management of tomato spotted wilt virus and yield production.

Pest Manag Sci

December 2024

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Background: Tomato-spotted wilt virus (TSWV) from the Tospovirus genus affects over 1000 plant species, including key crops, and traditional control methods often prove inadequate. This study investigates the effectiveness of Bacillus amyloliquefaciens and Bacillus subtilis in reducing TSWV infection, enhancing plant growth, and strengthening defense in Nicotiana benthamiana. The aim is to assess Bacillus as a sustainable biocontrol alternative, offering an eco-friendly solution for managing TSWV disease in agriculture.

View Article and Find Full Text PDF

Due to the vulnerability of pepper ( spp.) and the virulence of tomato spotted wilt virus (TSWV), seasonal shortages and surges of prices are a challenge and thus threaten household income. Traditional bioassays for detecting TSWV, such as observation for symptoms and reverse transcription-PCR, are time-consuming, labor-intensive, and sometimes lack precision, highlighting the need for a faster and more reliable approach to plant disease assessment.

View Article and Find Full Text PDF

Tomato spotted wilt orthotospovirus (TSWV) is one of the most destructive pathogens and causes serious losses in agriculture worldwide. Biogenic pesticides application may be an effective approach for defending against TSWV. Tagitinin A (Tag A) extracted from Tithonia diversifolia (Hemsl.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!