Background: Examining the mechanistic cellular responses to heat stress could aid in addressing the increasing prevalence of decreased fertility due to elevated ambient temperatures. Here, we aimed to study the differential responses of oocytes and granulosa cells to thermal fluctuations due to seasonal differences. Dry beef cows (n = 10) were housed together, synchronized and subjected to a stimulation protocol to induce follicular growth before ovum pick-up (OPU). Two OPU's were conducted (summer and winter) to collect cumulus-oocyte-complexes (COCs) and granulosa cells. In addition, rectal temperatures and circulating blood samples were collected during OPU. Oocytes were separated from the adherent cumulus cells, and granulosa cells were isolated from the collected OPU fluid. RNA was extracted from pools of oocytes and granulosa cells, followed by library preparation and RNA-sequencing. Blood samples were further processed for the isolation of plasma and leukocytes. The transcript abundance of HSP70 and HSP90 in leukocytes was evaluated using RT-qPCR, and plasma cortisol levels were evaluated by immunoassay. Environmental data were collected daily for three weeks before each OPU session. Data were analyzed using MIXED, Glimmix or GENMOD procedures of SAS, according to each variable distribution.
Results: Air temperatures (27.5 °C vs. 11.5 °C), average max air temperatures (33.7 °C vs. 16.9 °C), and temperature-humidity indexes, THI (79.16 vs. 53.39) were shown to contrast significantly comparing both the summer and winter seasons, respectively. Rectal temperatures (Summer: 39.2 ± 0.2 °C; Winter: 38.8 ± 0.2 °C) and leukocyte HSP70 transcript abundance (Summer: 4.18 ± 0.47 arbitrary units; Winter: 2.69 ± 0.66 arbitrary units) were shown to increase in the summer compared to the winter. No visual differences persisted in HSP90 transcript abundance in leukocytes and plasma cortisol concentrations during seasonal changes. Additionally, during the summer, 446 and 940 transcripts were up and downregulated in oocytes, while 1083 and 1126 transcripts were up and downregulated in the corresponding granulosa cells, respectively (Fold Change ≤ -2 or ≥ 2 and FDR ≤ 0.05). Downregulated transcripts in the oocytes were found to be involved in ECM-receptor interaction and focal adhesion pathways, while the upregulated transcripts were involved in protein digestion and absorption, ABC transporters, and oocyte meiosis pathways. Downregulated transcripts in the granulosa cells were shown to be involved in cell adhesion molecules, chemokine signaling, and cytokine-cytokine receptor interaction pathways, while those upregulated transcripts were involved in protein processing and metabolic pathways.
Conclusion: In conclusion, seasonal changes dramatically alter the gene expression profiles of oocytes and granulosa cells in beef cows, which may in part explain the seasonal discrepancies in pregnancy success rates during diverging climatic weather conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479552 | PMC |
http://dx.doi.org/10.1186/s13048-024-01530-0 | DOI Listing |
Histol Histopathol
December 2024
Department of Histology and Embryology, Ondokuz Mayıs University, Samsun, Türkiye.
Diabetes mellitus (DM) causes numerous systemic diseases in animals and humans. This may also lead to reproductive problems among individuals of reproductive age. Detrimental effects such as apoptosis in ovarian granulosa cells, degradation of communication proteins, decreased oocyte quality, delayed meiotic maturation, and atrophy are among the increasing evidence that chronic hyperglycemia causes reproductive problems.
View Article and Find Full Text PDFJ Cell Biochem
January 2025
Department of Integrated Traditional Chinese Medicine and Western Medicine, The Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
Gengnianchun (GNC) is a traditional remedy used for diminished ovarian reserve, but its underlying mechanisms remain unclear. This study aimed to explore these mechanisms in human granulosa-like cancer (KGN) cells pretreated with medicated rat serum (MRS) before HO exposure. MRS pretreatment significantly alleviated HO-induced cell damage, including improvements in cell viability, superoxide dismutase and GSH-Px activities, and Bcl-2 expression.
View Article and Find Full Text PDFSci Rep
January 2025
School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, No.461 Bayi Road, Donghu District, Nanchang, 330006, Jiangxi Province, People's Republic of China.
As one of the essential lignan derivative found in traditional Chinese medicinal herbs, secoisolariciresinol diglucoside (SDG) was proved to promote women's health through its phytoestrogenic properties. Increasingly studies indicated that this compound could be a potential drug capable of preventing estrogen-related diseases. Here, we aimed to investigate whether SDG can counteract cyclophosphamide (CTX) induced premature ovarian insufficiency (POI) and further explore its specific molecular mechanism.
View Article and Find Full Text PDFTheriogenology
December 2024
Department of Theriogenology, University of Veterinary and Animal Sciences, Outfall Road, Lahore, 54000, Pakistan. Electronic address:
We hypothesized that human chorionic gonadotropic (hCG) could replace LH in the maturation media for buffalo oocytes, and hCG administration before ovum pick-up (OPU) enhances in-vitro development of buffalo oocytes. Objectives were 1) to investigate the effect of hCG supplementation on nuclear maturation, oocyte development, and granulosa cell mRNA abundance of genes related to growth and antioxidant pathways and 2) to determine the effect of hCG administration before OPU on in-vitro oocyte development. In Experiment 1, buffalo oocytes retrieved from slaughterhouse ovaries were maturated in the media supplemented with 0.
View Article and Find Full Text PDFMol Oncol
January 2025
Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain.
Forkhead box L2 (FOXL2) encodes a transcription factor essential for sex determination, and ovary development and maintenance. Mutations in this gene are implicated in syndromes involving premature ovarian failure and granulosa cell tumors (GCTs). This rare cancer accounts for less than 5% of diagnosed ovarian cancers and is causally associated with the FOXL2 c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!