In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min. The NaF-loaded n-HA substrates were then examined for their structural and physical properties, chemical bonds, loading and release profile, pH changes, cytotoxicity, and osteogenic effect on dental pulp stem cells (DPSCs) at the level of RNA and protein expression. The results showed that the n-HA substrates were porous (> 40% porosity) and had rough surfaces. The NaF could be successfully loaded on the substrates, which was 6.43, 4.50, and 1.47 mg, respectively for n-HA substrates with immersion times of 10, 7.5, and 5 min in the NaF suspensions. It was observed that the NaF release rate was rather fast during the first 24 h in all groups (39.06%, 36.43%, and 39.57% for 10, 7.5, and 5 min, respectively), and decreased dramatically after that, indicating a slow detachment of NaF. Furthermore, the pH of the medium related to all materials was changed during the first 4 days of immersion (from 7.38 to pH of about 7.85, 7.84, 7.63, and 7.66 for C0, C5, C7.5, and C10, respectively). The pH of media associated with the C7.5, and C10 increased up to 4 days and remained relatively constant until day 14 (pH = 7.6). The results of the cytotoxicity assay rejected any toxicity of the fabricated NaF-loaded n-HA substrates on DPSCs, and the cells could adhere to their surfaces with enlarged morphology. The results showed no effect on the osteogenic differentiation at the protein level. Nevertheless, this effect was observed at the gene level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476061 | PMC |
http://dx.doi.org/10.1186/s12903-024-04987-z | DOI Listing |
BMC Oral Health
October 2024
Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min.
View Article and Find Full Text PDFGlob Chang Biol
February 2024
Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.
Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N O, and N ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade.
View Article and Find Full Text PDFJ Econ Entomol
August 2024
USDA-ARS Poultry Research Unit, Mississippi State, MS 39759, USA.
Insect manure or "frass" has emerged as an alternative nutrient source for alleviating the dependence on fossil fuel-based fertilizers, reducing food waste, and promoting food security. Yet, research on insect frass chemical composition is in its infancy. Here, we assessed the chemical properties of yellow mealworm (Tenebrio molitor L.
View Article and Find Full Text PDFJ Environ Manage
January 2024
National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China. Electronic address:
Excessive nitrogen (N) loading poses a substantial risk to soil biodiversity and disrupts carbon (C) flows within the soil food web. Intercropping with legumes is often considered a sustainable way to maintain soil N availability and mitigate the associated detrimental effects. However, it remains unclear whether and how legume crops restore energetic attenuation caused by N loading within the soil food web.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!