In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min. The NaF-loaded n-HA substrates were then examined for their structural and physical properties, chemical bonds, loading and release profile, pH changes, cytotoxicity, and osteogenic effect on dental pulp stem cells (DPSCs) at the level of RNA and protein expression. The results showed that the n-HA substrates were porous (> 40% porosity) and had rough surfaces. The NaF could be successfully loaded on the substrates, which was 6.43, 4.50, and 1.47 mg, respectively for n-HA substrates with immersion times of 10, 7.5, and 5 min in the NaF suspensions. It was observed that the NaF release rate was rather fast during the first 24 h in all groups (39.06%, 36.43%, and 39.57% for 10, 7.5, and 5 min, respectively), and decreased dramatically after that, indicating a slow detachment of NaF. Furthermore, the pH of the medium related to all materials was changed during the first 4 days of immersion (from 7.38 to pH of about 7.85, 7.84, 7.63, and 7.66 for C0, C5, C7.5, and C10, respectively). The pH of media associated with the C7.5, and C10 increased up to 4 days and remained relatively constant until day 14 (pH = 7.6). The results of the cytotoxicity assay rejected any toxicity of the fabricated NaF-loaded n-HA substrates on DPSCs, and the cells could adhere to their surfaces with enlarged morphology. The results showed no effect on the osteogenic differentiation at the protein level. Nevertheless, this effect was observed at the gene level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11476061PMC
http://dx.doi.org/10.1186/s12903-024-04987-zDOI Listing

Publication Analysis

Top Keywords

n-ha substrates
20
osteogenic differentiation
8
dental pulp
8
pulp stem
8
stem cells
8
sodium fluoride
8
naf suspensions
8
naf-loaded n-ha
8
c75 c10
8
substrates
7

Similar Publications

In the present study, nano-hydroxyapatite (n-HA) powder was extracted from carp bone waste to fabricate porous n-HA substrates by a molding and sintering process. Subsequently, the substrates were loaded with different amounts of sodium fluoride (NaF) through immersion in NaF suspensions for 10, 7.5, and 5 min.

View Article and Find Full Text PDF

Modeling denitrification nitrogen losses in China's rice fields based on multiscale field-experiment constraints.

Glob Chang Biol

February 2024

Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, China.

Denitrification plays a critical role in soil nitrogen (N) cycling, affecting N availability in agroecosystems. However, the challenges in direct measurement of denitrification products (NO, N O, and N ) hinder our understanding of denitrification N losses patterns across the spatial scale. To address this gap, we constructed a data-model fusion method to map the county-scale denitrification N losses from China's rice fields over the past decade.

View Article and Find Full Text PDF

Insect manure or "frass" has emerged as an alternative nutrient source for alleviating the dependence on fossil fuel-based fertilizers, reducing food waste, and promoting food security. Yet, research on insect frass chemical composition is in its infancy. Here, we assessed the chemical properties of yellow mealworm (Tenebrio molitor L.

View Article and Find Full Text PDF

Leguminous crop restores the carbon flow attenuation from nitrogen loading within soil nematode food web in a Camellia oleifera plantation.

J Environ Manage

January 2024

National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha, 410004, China; Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, China. Electronic address:

Excessive nitrogen (N) loading poses a substantial risk to soil biodiversity and disrupts carbon (C) flows within the soil food web. Intercropping with legumes is often considered a sustainable way to maintain soil N availability and mitigate the associated detrimental effects. However, it remains unclear whether and how legume crops restore energetic attenuation caused by N loading within the soil food web.

View Article and Find Full Text PDF

Biodegradable gelatin (G) food packaging films are in increasing demand as the substitution of petroleum-based preservative materials. However, G packaging films universally suffer from weak hydrophobicity in practical applications. Constructing a hydrophobic micro/nanocoating with low surface energy is an effective countermeasure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!