A sniff in humans typically lasts one to three seconds and is commonly considered to produce a long-exposure shot of the chemical environment that sets the temporal limit of olfactory perception. To break this limit, we devised a sniff-triggered apparatus that controls odorant deliveries within a sniff with a precision of 18 milliseconds. Using this apparatus, we show through rigorous psychophysical testing of 229 participants (649 sessions) that two odorants presented in one order and its reverse become perceptually discriminable when the stimulus onset asynchrony is merely 60 milliseconds (Cohen's d = 0.48; 95% confidence interval, (55, 59); 120-millisecond difference). Discrimination performance improves with the length of stimulus onset asynchrony and is independent of explicit knowledge of the temporal order of odorants or the relative amount of odorant molecules accumulated in a sniff. Our findings demonstrate that human olfactory perception is sensitive to chemical dynamics within a single sniff and provide behavioural evidence for a temporal code of odour identity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41562-024-01984-8 | DOI Listing |
Front Zool
January 2025
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, People's Republic of China.
Background: Odorant binding proteins (OBPs) initiate the process of odorant perception. Numerous investigations have demonstrated that OBPs bind a broad variety of chemicals and are more likely to carry pheromones or odor molecules with high binding affinities. However, few studies have investigated its effects on insect behavior.
View Article and Find Full Text PDFBMC Genomics
January 2025
College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
Background: Chemosensory perception plays a vital role in insect survival and adaptability, driving essential behaviours such as navigation, mate identification, and food location. This sensory process is governed by diverse gene families, including odorant-binding proteins (OBPs), olfactory receptors (ORs), ionotropic receptors (IRs), chemosensory proteins (CSPs), gustatory receptors (GRs), and sensory neuron membrane proteins (SNMPs). The oriental mole cricket (Gryllotalpa orientalis Burmeister), an invasive pest with an underground, phyllophagous lifestyle, causes substantial crop damage.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand; Nakhornsawan campus, Mahidol University, Nakhonsawan, Thailand. Electronic address:
Our previous studies revealed a mating attractant or possibly a pheromone released from molting reproductive mature female prawns, Macrobrachium rosenbergii, stimulates the expression of insulin-like androgenic gland hormones in a co-culture system. The released attractant is perceived by olfactory receptors with setae located on the short lateral antennules (slAn), which connect to the olfactory neuropil in the central nervous system (CNS) of male prawns. This neural signaling propagating through the CNS is mediated by at least four neuropeptides, namely neuropeptide F (NPF), short NPF (sNPF), tachykinin (TK), and allatostatin-A (ATS-A) whose transcripts have been detected in the present study.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany.
Target odorant detection in mixtures has been shown to become more difficult as the number of background odorants increases and falls below chance level in mixtures with 16 components. Our aim was to investigate target odorant detection in mixtures among healthy people and compare it between dysosmic patients and age- and gender-matched controls. Participants underwent extensive olfactory testing and performed two target odorant detection tasks.
View Article and Find Full Text PDFAPL Bioeng
March 2025
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, 50121 Florence, Italy.
Olfactory perception can be studied in deep brain regions at high spatial resolutions with functional magnetic resonance imaging (fMRI), but this is complex and expensive. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) are limited to cortical responses and lower spatial resolutions but are easier and cheaper to use. Unlike EEG, available fNIRS studies on olfaction are few, limited in scope, and contradictory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!