Therapeutic interfering particles against HIV: molecular parasites reducing viremia.

Signal Transduct Target Ther

Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Published: October 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473699PMC
http://dx.doi.org/10.1038/s41392-024-02001-0DOI Listing

Publication Analysis

Top Keywords

therapeutic interfering
4
interfering particles
4
particles hiv
4
hiv molecular
4
molecular parasites
4
parasites reducing
4
reducing viremia
4
therapeutic
1
particles
1
hiv
1

Similar Publications

siRNA Knocking Down in HepG2 Cells Identifies PFKFB4 and HNF4α as Key Genes Important for Cancer Cell Survival.

Curr Gene Ther

January 2025

Department of Pharmacology, Faculty of Medicine, The University of Jordan, Queen Rania Al-Abdullah Street, Amman 11942, Jordan.

Introduction: Liposomes are versatile delivery systems for encapsulating small interfering RNAs (siRNAs) because they enhance cellular uptake and gene silencing. This study compares the new liposome formula to commercial lipofectamine in delivering siRNAs targeting hepatic carcinoma genes, focusing on HNF4-α and PFKFB4.

Methods: Flow cytometry and confocal microscopy revealed efficient internalization of PE-Rhod- B labeled lipoplexes in HepG2 cells, while cytotoxicity assays demonstrated significant reductions in cell viability, particularly with siHNF4-α and siPFKFB4.

View Article and Find Full Text PDF

Exploring the Therapeutic Potential of TROP2 Gene Silencing in Hepatocellular Carcinoma.

Recent Pat Biotechnol

January 2025

Professor Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt.

Background: Trophoblast Cell Surface Antigen 2 (Trop2) is a transmembrane glycoprotein that has been implicated in the progression and metastasis of various cancers, including hepatocellular carcinoma (HCC). Targeting Trop2 expression may represent a promising approach for the development of novel therapeutic strategies.

Objectives: This study aimed to investigate the effects of Trop2 knockdown using small interfering RNA (siRNA) on the phenotypic and molecular characteristics of the HepG2 liver cancer cell line.

View Article and Find Full Text PDF

Using the knowledge from decades of research into RNA-based therapies, the COVID-19 pandemic response saw the rapid design, testing and production of the first ever mRNA vaccines approved for human use in the clinic. This breakthrough has been a significant milestone for RNA therapeutics and vaccines, driving an exponential growth of research into the field. The development of novel RNA therapeutics targeting high-threat pathogens, that pose a substantial risk to global health, could transform the future of health delivery.

View Article and Find Full Text PDF

Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.

View Article and Find Full Text PDF

Revealing New Analytical Insights into RNA Complexes: Divalent siRNA Characterization by Liquid Chromatography and Mass Spectrometry.

Anal Chem

January 2025

Synthetic Molecule Analytical Chemistry, Genentech Inc., South San Francisco, California 94080, United States.

Accurate characterization of therapeutic RNA, including purity and identity, is critical in drug discovery and development. Here, we utilize denaturing and non-denaturing chromatography for the analysis of ∼25 kDa divalent small interfering RNA (di-siRNA), which comprises a complex 2:1 triplex structure. Ion pair reversed-phase (IPRP) liquid chromatography (LC) experiments with UV absorbance and mass spectrometry (MS) showcase a single denaturing LC method for identity confirmation, impurity profiling, and sequencing with automated MS data interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!