Electric-Field Controlled Switchable and Efficient Separation of Radioactive Xe/Kr on Borophene: A Theoretical Study.

Chemphyschem

State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou, 215123, China.

Published: January 2025

AI Article Synopsis

  • Researchers have developed a method for efficiently separating radioactive xenon (Xe) and krypton (Kr) during nuclear fuel reprocessing using borophene as a solid adsorbent.
  • Applying an electric field significantly enhances the adsorption of Xe and Kr on borophene, increasing the strength of their interaction and allowing for effective separation.
  • The process is reversible; once the electric field is turned off, Xe can easily be desorbed from the borophene surface without any energy barriers, making the adsorbent reusable.

Article Abstract

The efficient and reversible separation of radioactive Xe/Kr during spent fuel reprocessing is important and challenging for the rapid development of nuclear energy. In this study, we firstly report a strategy of applying an electric field on the solid adsorbent borophene to realize efficient and switchable Xe/Kr separation via a density functional theory (DFT) investigation. Based on the calculational results, the adsorption energies for Xe and Kr on borophene without an electric field are -0.25 eV and -0.18 eV, respectively, indicating that Xe and Kr can only form weak adsorption on borophene. However, by applying an electric field (0.006 a.u.) to the systems, the adsorption energies for Xe and Kr on borophene are -0.98 eV and -0.47 eV, respectively, which shows that the interaction between Xe and borophene has increased dramatically compared with that of Kr, so Xe can be separated from radioactive Xe/Kr mixtures. What's more, when the electric field is removed, desorption of Xe from the surface of borophene is exothermic without an energy barrier. The adsorbent is recyclable. In summary, this theoretical study provides novel information for experimental researches, the highly efficient Xe/Kr separation can be controlled by turning on/off the applied electric field.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.202400720DOI Listing

Publication Analysis

Top Keywords

electric field
20
radioactive xe/kr
12
separation radioactive
8
theoretical study
8
applying electric
8
xe/kr separation
8
adsorption energies
8
energies borophene
8
borophene
7
xe/kr
5

Similar Publications

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis.

J Am Chem Soc

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.

View Article and Find Full Text PDF

As the clinical applicability of peripheral nerve stimulation (PNS) expands, the need for PNS-specific safety criteria becomes pressing. This study addresses this need, utilizing a novel machine learning and computational bio-electromagnetics modeling platform to establish a safety criterion that captures the effects of fields and currents induced on axons. Our approach is comprised of three steps: experimentation, model creation, and predictive simulation.

View Article and Find Full Text PDF

Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!