A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bismuth oxyiodide-based composites for advanced visible-light activation of peroxymonosulfate in pharmaceutical mineralization. | LitMetric

Bismuth oxyiodide-based composites for advanced visible-light activation of peroxymonosulfate in pharmaceutical mineralization.

Chemosphere

Grup d'Electrodeposició de Capes Primes i Nanoestructures (GE-CPN), Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Martí i Franquès, 1, E-08028, Barcelona, Catalonia, Spain; Institute of Nanoscience and Nanotechnology (IN(2)UB), Universitat de Barcelona, Barcelona, Catalonia, Spain. Electronic address:

Published: October 2024

AI Article Synopsis

  • Pharmaceutical pollutants in water are a serious environmental and health issue, leading to concerns like antibiotic resistance.
  • Advanced oxidation processes (AOPs), particularly using peroxymonosulfate (PMS) with bismuth oxyiodide (BiOI), show promise in degrading these contaminants effectively.
  • A study found that BiOI composites with barium ferrite (BFO) significantly improved the degradation of tetracycline (TC), achieving nearly complete removal under ideal conditions, but faced challenges in more complex water environments; increasing PMS concentration improved results notably.

Article Abstract

The presence of pharmaceutical pollutants in water bodies represents a significant environmental and public health concern, largely due to their inherent persistence and potential to induce antibiotic resistance. Advanced oxidation processes (AOPs) that employ peroxymonosulfate (PMS) activation have emerged as an effective means of degrading these contaminants. Bismuth oxyiodides (BiOI), which are known for their visible-light photocatalytic properties, demonstrate considerable potential for removal of pharmaceutical pollutants. This study examines the synthesis and performance of BiOI-based composites with barium ferrite (BFO) nanoparticles for enhanced PMS activation under visible light. BiOI and BiOI were synthesized via solvothermal and electrodeposition methods, respectively, and their morphologies and crystalline structures were observed to exhibit distinctive characteristics following annealing. The formation of the composite with BFO resulted in an improvement in the catalytic properties, which in turn enhanced the surface area and availability of active sites. The objective of the photocatalytic studies was to evaluate the degradation and mineralization of tetracycline (TC) under visible light, PMS, and combined conditions. The BiOI(ED)-BFO catalyst was identified as the optimal candidate, achieving up to 99.8% TC degradation and 99.4% mineralization within 90 min at room temperature. The synergistic effect of BFO in BiOI-based composites significantly enhanced performance across all conditions, indicating their potential for efficient remediation of pharmaceutical pollutant. The material's performance was further evaluated in tap water, where the degradation efficiency decreased to 56.4% and mineralization to 38.2%. These results reflect the challenges posed by complex water matrices. However, doubling the PMS concentration to 5 mM led to improved outcomes, with 93.8% degradation and 81.4% mineralization achieved. These findings demonstrate the material's robust potential for treating pharmaceutical pollutants in real-world conditions, advancing sustainable water treatment technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143532DOI Listing

Publication Analysis

Top Keywords

pharmaceutical pollutants
12
pms activation
8
bioi-based composites
8
visible light
8
pharmaceutical
5
mineralization
5
bismuth oxyiodide-based
4
oxyiodide-based composites
4
composites advanced
4
advanced visible-light
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!