Synthesis and characterization of self-healing bio-based polyurethane from microbial poly(3-hydroxybutyrate) produced in methanotrophs.

Int J Biol Macromol

Department of Chemical Engineering, BK21 FOUR Integrated Engineering Program, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea. Electronic address:

Published: November 2024

Poly(3-hydroxybutyrate) (PHB) is an important class of renewable and biodegradable polymers that have recently attracted significant interest. However, the limitations of the physical properties of PHB, owing to its brittle nature, hinder its application in versatile polymers. In this study, we propose an efficient conversion of microbial PHB produced and recovered from methanotrophs to produce the oligomer PHB-diol. The PHB transesterification was conducted using different alcohols and the reaction conditions were optimized to obtain a liquid-like PHB-diol product, a low-molar-mass polyol with a molecular weight of 1000-1400 g/mol for polyurethane (PU) synthesis. A comprehensive characterization of PU samples made from PHB-derived polyol suggested that it could be a viable substitute for 50 wt% traditional petroleum-derived polyol in PU synthesis. In contrast to petroleum-based PU, the synthetic PU film made from microbiologically generated PHB-diol showed noteworthy self-healing ability with a healing efficiency of up to 91.08 % at moderate temperatures after a simple drying process. Self-healing ability is highly desirable and significant for the sustainable manufacturing of advanced materials from bioresources for a wide range of practical applications in electronic devices, coatings, biomedicine, and aerospace.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136533DOI Listing

Publication Analysis

Top Keywords

self-healing ability
8
synthesis characterization
4
characterization self-healing
4
self-healing bio-based
4
bio-based polyurethane
4
polyurethane microbial
4
microbial poly3-hydroxybutyrate
4
poly3-hydroxybutyrate produced
4
produced methanotrophs
4
methanotrophs poly3-hydroxybutyrate
4

Similar Publications

Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.

View Article and Find Full Text PDF

Injectable dual-network hyaluronic acid nanocomposite hydrogel for prevention of postoperative breast cancer recurrence and wound healing.

Int J Biol Macromol

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China.

High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties.

View Article and Find Full Text PDF

Hyaluronic Acid-Based Self-Healing Hydrogels for Diabetic Wound Healing.

Adv Healthc Mater

December 2024

School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India.

Diabetic wounds, particularly diabetic foot ulcers (DFUs), are significant threats to human well-being due to their impaired healing from poor circulation and high blood sugar, increased risk of infection and potential for severe complications like amputation, all compounded by peripheral neuropathy and chronic inflammation. Most therapies and dressings for DFUs focus on one symptom at a time, however, multifunctional smart self-healing hydrogels can withstand multifactorial motional diabetic wounds. Motional wounds are easy-to-split wounds that experience tension, compression, and movement caused by stress now and then.

View Article and Find Full Text PDF

Nanoenzymes-Integrated and Microenvironment Self-Adaptive Hydrogel for the Healing of Burn Injury and Post-Burn Depression.

Adv Sci (Weinh)

December 2024

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, P. R. China.

Burn injuries often cause prolonged oxidative stress and inflammatory pain due to an initial increase in inflammatory responses, consequently exacerbating depressive disorders and severely impairing patients' quality of life. The primary function of traditional burn dressings is to prevent infection and facilitate tissue repair. However, these dressings are not intended for the inflammatory pain and depression that often occur during recovery.

View Article and Find Full Text PDF

Adhesive and antibacterial guar gum-based nanocomposite hydrogel for remodeling wound healing microenvironment.

Int J Biol Macromol

December 2024

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China. Electronic address:

Hydrogels are promising wound dressings due to their extracellular matrix-like properties and tunable structure-function characteristics. Besides the physical isolation effect, hydrogel dressings are highly expected to possess tissue-adhesive performance and antibacterial capacity, which are beneficial for their clinical translations. Herein, a guar gum (GG)-based nanocomposite hydrogel was fabricated by mixing methacrylated GG (GGMA), acrylic acid, acrylated 3-aminophenylboronic acid, mangiferin (MF)-loaded cetyltrimethyl ammonium chloride (CTAC) micelles (MF@CTAC) and radical initiator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!