Advance in the application of 4-dimensional flow MRI in atrial fibrillation.

Magn Reson Imaging

Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China. Electronic address:

Published: January 2025

AI Article Synopsis

  • * New technologies, particularly 4-dimensional flow MRI, have improved the ability to visualize and analyze blood flow patterns, especially in relation to AF.
  • * This review discusses how 4D flow MRI can help measure important hemodynamic factors linked to AF and its complications, offering more insights into treatment options.

Article Abstract

Atrial fibrillation (AF) is the most prevalent arrhythmia in world-wild places and is associated with the development of severe secondary complications such as heart failure and stroke. Emerging evidence shows that the modified hemodynamic environment associated with AF can cause altered flow patterns in left atrial and even systemic blood associated with left atrial appendage thrombosis. Recent advances in magnetic resonance imaging (MRI) allow for the comprehensive visualization and quantification of in vivo aortic flow pattern dynamics. In particular, the technique of 4- dimensional flow MRI (4D flow MRI) offers the opportunity to derive advanced hemodynamic measures such as velocity, vortex, endothelial cell activation potential, and kinetic energy. This review introduces 4D flow MRI for blood flow visualization and quantification of hemodynamic metrics in the setting of AF, with a focus on AF and associated secondary complications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2024.110254DOI Listing

Publication Analysis

Top Keywords

flow mri
16
atrial fibrillation
8
secondary complications
8
left atrial
8
visualization quantification
8
flow
7
mri
5
advance application
4
application 4-dimensional
4
4-dimensional flow
4

Similar Publications

Purpose: This study aimed to assess the hemodynamic changes in the vena cava and predict the likelihood of Cardiac Remodeling (CR) and Myocardial Fibrosis (MF) in athletes utilizing four-dimensional (4D) parameters.

Materials And Methods: A total of 108 athletes and 29 healthy sedentary controls were prospectively recruited and underwent Cardiac Magnetic Resonance (CMR) scanning. The 4D flow parameters, including both general and advanced parameters of four planes for the Superior Vena Cava (SVC) and Inferior Vena Cava (IVC) (sheets 1-4), were measured and compared between the different groups.

View Article and Find Full Text PDF

A Method for Imaging the Ischemic Penumbra with MRI using IVIM.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology, Medical Physics (MML, TJC), Department of Interventional Radiology (NS, GAC), Department of Surgery and Large Animal Studies (MAN), and the Department of Statistics (MG), University of Chicago, Chicago, IL, USA; Department of Anesthesiology (SPR), University of Illinois, Chicago, IL, USA; Department of Radiology (MSS), University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Radiology, Biomedical Engineering and Imaging Institute (Current affiliation MML), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mount Carmel Health Systems (Current affiliation GAC), Columbus, OH, USA.

Background And Purpose: In acute ischemic stroke, the amount of "local" CBF distal to the occlusion, i.e. all blood flow within a region whether supplied antegrade or delayed and dispersed through the collateral network, may contain valuable information regarding infarct growth rate and treatment response.

View Article and Find Full Text PDF

Anti-amyloid therapy and cerebral blood flow changes on Magnetic Resonance Imaging: a potential longitudinal biomarker of treatment response?

AJNR Am J Neuroradiol

January 2025

From the Department of Department of Radiology, Brain Health Imaging Institute (A.R-F, J.I, S.P, M.d, G.C.C) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (A.R-F), Pontificia Universidad Javeriana, Bogota, Colombia; the Department of Radiology, Division of Molecular Imaging and Therapeutics (A.R-F, J.I) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA; the Department of Neurology (D.Z, MM, L.R, A.S.N) Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, USA.

Amyloid-targeting therapy has recently become widely available in the U.S. for the treatment of patients with symptomatic mild Alzheimer's disease (AD).

View Article and Find Full Text PDF

A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

Testosterone, an essential sex steroid hormone, influences brain health by impacting neurophysiology and neuropathology throughout the lifespan in both genders. However, human research in this area is limited, particularly in women. This study examines the associations between testosterone levels, gray matter volume (GMV) and cerebral blood flow (CBF) in midlife individuals at risk for Alzheimer's disease (AD), according to sex and menopausal status.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!