A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A green strategy to realize the high value utilization of lignin for hydrogel formation. | LitMetric

A green strategy to realize the high value utilization of lignin for hydrogel formation.

Sci Total Environ

Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Published: December 2024

Grafting lignin extracted from pulping black liquor onto hydrogel not only endows hydrogel with strong adsorption capacity, but also realizes the high value utilization of lignin, thereby alleviating the environmental pressure caused by the exhaust gas generated by direct combustion of black liquor. However, those lignin fragments have lost generous active functional groups as the high temperature polycondensation during industrial production, restricting the improvement of lignin-based hydrogel adsorption capacity. Herein, we propose a strategy combining amination and oxidation to prepare lignin derivatives with low molecular weight and high activity groups. The introduced amino groups promote the C-C cleavage of β-O-4 unit and the oxidation treatment converts S-unit hydroxyl to carboxyl. The hydrogel obtained by grafting aminated-oxidized-lignin shows satisfactory adsorption performance with a methylene blue adsorption capacity of 697.47 mg/g (vs. 195.12 mg/g for pristine hydrogel). The retention ability has also been greatly improved that only 0.43 % of the adsorbed methylene blue is released even after 96 h (vs. 5 % within just 12 h for pristine hydrogel). This work not only provides a new strategy for the high-value utilization of biomass resources, but also offers a new idea for the preparation of hydrogels with high adsorption performance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.176760DOI Listing

Publication Analysis

Top Keywords

adsorption capacity
12
high utilization
8
utilization lignin
8
black liquor
8
adsorption performance
8
methylene blue
8
pristine hydrogel
8
hydrogel
7
high
5
lignin
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!