Efficient energy transfer management in catalytic processes is crucial for overcoming activation energy barriers while minimizing costs and CO emissions. We exploit here a concept of CuO particle design with multiple gas-stabilizing sites, engineered to function as cavitation nuclei and catalysts. This concept facilitates the selective and efficient acoustic energy transfer directly to the catalyst surface, avoiding the undesired dissipation of acoustic energy into the bulk solution while demonstrating superior cavitation properties at lower acoustic pressure amplitudes. Utilizing a chemical thermometric approach, we demonstrate that the local temperature on the surface of our CuO particles during cavitation bubble implosions can create an effective equivalent temperature of about 360 °C. This temperature effect facilitates the efficient catalysis of oxidative reactions using an organic pollutant probe molecule. Density functional theory (DFT) calculations were used to assess the decomposition of HO and of pollutant probe molecule on CuO (111). Our work represents a significant advance in sonocatalytic systems, promising efficient energy use in catalytic reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202416543 | DOI Listing |
Nanoscale
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.
The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.
View Article and Find Full Text PDFAdv Mater
January 2025
Center for Renewable Energy and Storage Technologies (CREST), Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
The sluggish anodic oxygen evolution reaction (OER) in proton exchange membrane (PEM) electrolysis necessitates applied bias to facilitate electron transfer as well as bond cleavage and formation. Traditional electrocatalysis focuses on analyzing the effects of electron transfer, while the role of charge accumulation induced by the applied overpotential has not been thoroughly investigated. To explore the influence mechanism of bias-driven charge accumulation, capacitive Mn is incorporated into IrO to regulate the local electronic structure and the adsorption behavior.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Queensland University of Technology, School of Chemistry and Physics, 2 George Street, 4000, Brisbane, AUSTRALIA.
We demonstrate that single-chain nanoparticles (SCNPs) - compact covalently folded single polymer chains - can increase photocatalytic performance of an embedded catalytic center, compared to the comparable catalytic system in free solution. In particular, we demonstrate that the degree of compaction allows to finely tailor the catalytic activity, thus evidencing that molecular confinement is a key factor in controlling photocatalysis. Specifically, we decorate a linear parent polymer with both photoreactive chalcone moieties as well as Ru(bpy)3 catalytic centers.
View Article and Find Full Text PDFTetrahedron Lett
October 2024
Department of Chemistry, University of California, Berkeley, CA 94720, USA.
Neutral dual hydrogen bond donors (HBDs) are effective catalysts that enhance the electrophilicity of substrates or the Lewis/Brønsted acidity of reagents through an anion-binding mechanism. Despite their success in various enantioselective organocatalytic reactions, their application to transition metal catalysis remains rare. Herein, we report the activation of gold(I) precatalysts by chiral ureas, leading to enantioselective hydroarylation of allenes with indoles.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education of the P. R. China, Shandong University, Jinan, 250100, P. R. China.
The dual-site electrocatalysts formed by metal single atoms combines with metal nanoparticles represent a promising strategy to enhance both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) performance. Herein, defect engineering is applied to dual-site ORR and OER electrocatalysts. Its design, synthesis, structural properties, and catalytic performance experimentally and theoretically are insightfully studied for the single-atomic Fe─N and the adjacent FeCo nanoalloy (FeCo) as dual-site loading on nitrogen-doped graphene aerogel (Fe─N/FeCo@NGA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!