Concurrently Improving both Mechanical and Electrochemical Performances of Quasi-Solid-State Electrical Double-Layer Capacitors by a Rational Design of Gel Polymer Electrolytes.

ACS Appl Mater Interfaces

Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, P. R. China.

Published: October 2024

AI Article Synopsis

Article Abstract

Aqueous poly(vinyl alcohol) (PVA) gel electrolyte-based quasi-solid-state electrical double-layer capacitors (QSEDLCs) have been extensively investigated in the past ten years, but challenges remain to fabricate the PVA gel electrolyte possessing both superior mechanical and outstanding electrochemical performances. Herein, we develop a strategy to address this issue by a rational design of PVA gel electrolytes, based on a combination of the freeze-thaw (FT) method and sodium perchlorate (NaClO)-based water-in-salt (WIS) electrolyte. Our study demonstrates that either the FT method or the NaClO-based WIS electrolyte can improve both the mechanical performance of the PVA gel electrolyte by increasing the crystallization of PVA chains and the electrochemical performance of the PVA gel electrolyte-based QSEDLC by different mechanisms. In comparison with the conventional solvent evaporation method, this work provides an effective strategy to concurrently improve both the mechanical and electrochemical performances of aqueous QSEDLCs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c10344DOI Listing

Publication Analysis

Top Keywords

pva gel
20
electrochemical performances
12
mechanical electrochemical
8
quasi-solid-state electrical
8
electrical double-layer
8
double-layer capacitors
8
rational design
8
gel electrolyte-based
8
gel electrolyte
8
wis electrolyte
8

Similar Publications

Decommissioning of nuclear facilities can be performed in stages. One of the stages and processes in decontamination is the decontamination process before dismantling or facility area recovery activities. Decontamination can be performed using various methods, primarily physical and chemical.

View Article and Find Full Text PDF

Hybrid Hydrogel Supplemented with Algal Polysaccharide for Potential Use in Biomedical Applications.

Gels

December 2024

Department of Inorganic Chemistry, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030016 Bucharest, Romania.

Hydrogels are a viable option for biomedical applications due to their biocompatibility, biodegradability, and ability to incorporate various healing agents while maintaining their biological efficacy. This study focused on the preparation and characterization of novel hybrid hydrogels enriched with the natural algae compound Ulvan for potential use in wound dressings. The characterization of the hydrogel membranes involved multiple methods to assess their structural, mechanical, and chemical properties, such as pH measurements, swelling, moisture content and uptake, gel fraction, hydrolytic degradation, protein adsorption and denaturation tests, rheological measurements, SEM, biocompatibility testing, and scratch wound assay.

View Article and Find Full Text PDF

Polydopamine/Melamine Sponge-Derived Compressible Carbon Foam for High-Performance Supercapacitors.

Langmuir

January 2025

Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.

Electrode materials with a deformation capability are vital to the development of flexible supercapacitors. However, the preparation of porous carbons with a deformability remains challenging. Herein, a compressible carbon foam has been successfully prepared using a polydopamine/melamine sponge (PDA/MS) as the precursor material.

View Article and Find Full Text PDF

Fabrication and characterization of in situ gelling oxidized carboxymethyl cellulose/gelatin nanofibers for wound healing applications.

Int J Biol Macromol

January 2025

Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.

Although tissue engineering science has made great progress, wound healing has remained a significant clinical challenge, especially in cases of severe injuries requiring advanced treatment strategies. This study aimed to develop patient-friendly in situ gelling nanofibers composed of oxidized carboxymethyl cellulose (OCMC) and gelatin for wound healing applications. A two-axial electrospinning technique was employed to fabricate OCMC/PVA-Gelatin hybrid nanofibers.

View Article and Find Full Text PDF

Immobilization and characterization of β-galactosidase from Aspergillus oryzae in PVA-CMC hydrogel.

Int J Biol Macromol

January 2025

Department of Chemistry, Faculty of Arts and Science, Yildiz Technical University, Turkey. Electronic address:

Creating new formulations of immobilized enzymes has been a major focus of modern biotechnology. In this study, the industrially significant β-galactosidase was immobilized by being trapped in a polyvinyl alcohol and carboxymethyl cellulose (PVA-CMC) gel. The immobilized enzyme was optimized and characterized, and the results were compared with those obtained using free enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!