A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sinogram-characteristic-informed network for efficient restoration of low-dose SPECT projection data. | LitMetric

Sinogram-characteristic-informed network for efficient restoration of low-dose SPECT projection data.

Med Phys

School of Computer Science and Engineering, and Guangdong Province Key Lab of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong, China.

Published: October 2024

AI Article Synopsis

  • The study revolves around enhancing the restoration of low-dose SPECT sinograms using a new neural network model called SCI-Net, which takes into account specific characteristics of sinograms to improve image quality.
  • SCI-Net employs innovative mechanisms such as channel and position attention modules to leverage continuity and capture correlations in sinograms, along with a multi-stage approach to maintain both local details and global structures during restoration.
  • Experimental results demonstrate the effectiveness of SCI-Net in restoring low-dose sinograms, showing significant improvements in image quality metrics like peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) compared to normal-dose references.

Article Abstract

Background: Single Photon Emission Computed Tomography (SPECT) sinogram restoration for low-dose imaging is a critical challenge in medical imaging. Existing methods often overlook the characteristics of the sinograms, necessitating innovative approaches.

Purpose: In this study, we introduce the Sinogram-characteristic-informed network (SCI-Net) to address the restoration of low-dose SPECT sinograms. Our aim is to build and train a model based on the characteristics of sinograms, including continuity, periodicity, multi-scale properties of lines in sinograms, and others, to enhance the model's understanding of the restoration process.

Methods: SCI-Net incorporates several novel mechanisms tailored to exploit the inherent characteristics of sinograms. We implement a channel attention module with a decay mechanism to leverage continuity across adjacent sinograms, while a position attention module captures global correlations within individual sinograms. Additionally, we propose a multi-stage progressive integration mechanism to balance local detail and overall structure. Multiple regularization terms, customized to sinogram image characteristics, are embedded into the loss function for model training.

Results: The experimental evaluations are divided into two parts: simulation data evaluation and clinical evaluation. The simulation data evaluation is conducted on a dataset comprising ten organ types, generated by the SIMIND Monte Carlo program from extended cardiac-torso (XCAT) anatomical phantoms. The dataset includes a total of SPECT sinograms with low-dose as input data and normal-dose as ground truth, consisting of 3881 sinograms in the training dataset and 849 sinograms in the testing set. When comparing the restoration of low-dose sinograms to normal-dose references, SCI-Net effectively improves performance. Specifically, the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) on sinograms increase from 15.72 to 34.66 ( 0.001) and 0.6297 to 0.9834 ( 0.001), respectively, and on reconstructed images, reconstructed by maximum likelihood-expectation maximization (ML-EM), the PSNR and the SSIM improve from 21.95 to 33.14 ( 0.001) and 0.9084 to 0.9866 ( 0.001), respectively. We compared SCI-Net with existing methods, including baseline models, traditional reconstruction algorithms, end-to-end methods, sinogram restoration methods, and image post-processing methods. The experimental results and visual examples demonstrate that SCI-Net surpasses these existing methods in SPECT sinogram restoration. The clinical evaluation is conducted on clinical data of low-dose SPECT sinograms for spleen, thyroid, skull, and bone. These SPECT projection data are obtained from Discovery NM/CT670 scans. We compare the reconstructed images from the SCI-Net restored sinograms, the reconstructed images from the original low-dose sinograms, and the reconstructed images using the built-in algorithm of the Discovery NM/CT670. The results show that our method effectively reduces the coefficient of variation (COV) in the regions of interest (ROI) of the reconstructed images, thereby enhancing the quality of the reconstructed images through SPECT sinogram restoration.

Conclusions: Our proposed SCI-Net exhibits promising performance in the restoration of low-dose SPECT projection data. In the SCI-Net, we have implemented three mechanisms based on distinct forms, which are advantageous for the model to more effectively leverage the characteristics of sinograms and achieve commendable restoration outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17459DOI Listing

Publication Analysis

Top Keywords

reconstructed images
24
restoration low-dose
20
low-dose spect
16
sinograms
16
characteristics sinograms
16
spect projection
12
projection data
12
sinogram restoration
12
existing methods
12
spect sinograms
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!