A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Image Discretization and Patch Size on Microbubble Localization Precision. | LitMetric

For ultrasound localization microscopy, the localization of microbubbles (MBs) is an essential part to obtain super-resolved maps of the vasculature. This paper analyzes the impact of image discretization and patch size on the precision of different MB localization methods to reconcile different observations from previous studies, provide an estimate of feasible localization precision, and derive guidelines for an optimal parameter selection. For this purpose, images of MBs were simulated with Gaussian point-spread functions (PSF) of varying width parameter σ at randomly generated subpixel positions, and Rician distributed noise was added. Four localization methods were tested on patches of different sizes (number of pixels N × N): Gaussian fit, radial symmetry method, calculation of center of mass, and peak detection. Additionally, the Cramér-Rao lower bound (CRLB) for the given estimation problem was calculated. Our results show that the localization precision is strongly influenced by the ratio of the PSF width parameter σ to the pixel size Δ, as well as the patch size N. The best parameter combination depends on the localization method. Generally, very small σ/Δ ratios as well as large σ/Δ ratios in combination with small N lead to performance degradation. The Gaussian fit as representative of a model-based fit comes close to the CRLB and always performs best for the σ/Δ ratios given by image discretization if N is adapted to the PSF. To achieve good results with the Gaussian fit and the radial symmetry method, a good rule of thumb is to set the pixel sizes Δ ≤ σ/0.6 and the patch sizes N ≥ 2σ/Δ + 3.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TUFFC.2024.3479710DOI Listing

Publication Analysis

Top Keywords

image discretization
12
patch size
12
localization precision
12
gaussian fit
12
σ/Δ ratios
12
discretization patch
8
localization
8
localization methods
8
width parameter
8
fit radial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!