A two-component low-molecular-weight gelator (LMWG) formed from a modified amino acid and an aldehyde was formulated with active pharmaceutical ingredients (APIs). Basic APIs (propranolol, atropine) can be mixed with the LMWG prior to gel assembly while acidic APIs (naproxen, rosuvastatin) inhibit assembly by disrupting the LMWG imine bond and were loaded by diffusion after gel assembly. For diffusion-loaded gels, the API in the liquid-like phase was rapidly released, with the remainder, interacting with gel fibres, retained in the gel. Rosuvastatin release was particularly low with Saturation Transfer Difference (STD) NMR indicating interactions between the aromatic ring and the self-assembled gel network. Propranolol also interacted with the gel via its aromatic unit, and its release led to gel erosion. Using agarose as a polymer gelator additive reinforced the gel, restricting erosion. In contrast, atropine was readily released over a period of hours - it is primarily in the liquid-like phase with STD NMR indicating no interactions with the gel network. The atropine-loaded gel retained its thixotropic properties. Overall, APIs must be carefully chosen to optimise formulation/release. Of the APIs investigated, atropine has most potential for further development. Atropine has applications in treating myopia, and our results suggest potential ophthalmic applications of supramolecular gels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202402530 | DOI Listing |
BMC Pediatr
January 2025
Department of Public Health, Federal University of Technology Owerri, Owerri, Imo State, Nigeria.
Background: Umbilical cord care is an important aspect of newborn health, and different practices exist around the world, often influenced by cultural, healthcare infrastructure, and socioeconomic factors. The objective of this systematic review is to synthesize current literature on umbilical cord care practices in Nigeria, with an emphasis on the impact of cultural beliefs, healthcare infrastructure, and socioeconomic factors.
Methods: A comprehensive search for literature was performed across PubMED, MEDLINE and Google scholar for studies published between 2010 and 2023.
Adv Healthc Mater
January 2025
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, University of Manchester, Manchester, UK.
Cells display a range of mechanical activities generated by motor proteins powered through catalysis. This raises the fundamental question of how the acceleration of a chemical reaction can enable the energy released from that reaction to be transduced (and, consequently, work to be done) by a molecular catalyst. Here we demonstrate the molecular-level transduction of chemical energy to mechanical force in the form of the powered contraction and powered re-expansion of a cross-linked polymer gel driven by the directional rotation of artificial catalysis-driven molecular motors.
View Article and Find Full Text PDFSci Rep
January 2025
College of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
The synergistic utilization of multiple solid waste is an effective means of achieving green filling and resource utilization of solid waste in mines. In this paper, the synergistic effects of solid waste granulated blast furnace slag (GS) and carbide slag (CS) as cementitious materials (GCCM) are investigated, along with their preliminary feasibility in combination with coal gangue (CG) and furnace bottom slag (FBS) for the preparation of backfill materials. The synergistic hydration mechanism, mechanical properties, working performance of GCCM and GBC were studied, and the environmental impact and cost-effectiveness of GBC were evaluated.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Novel Drug Delivery Systems Laboratory, Faculty of Pharmacy, Medical Sciences/University of Tehran, Tehran, Iran.
Analyzing the chemical composition of different kinds of acrylic cement is necessary to understand their properties and suitability for curing bone defects. Conducting various chemical tests can give valuable insight into the composition, viscosity, and performance characteristics of each kind of cement, Therefore, our study aimed to find safety standards and the effectiveness of these products for medical applications. The polymeric characterization was determined by Nuclear Magnetic Resonance (H-NMR) spectroscopy and Fourier-transform infrared spectroscopy (FTIR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!