AI Article Synopsis

  • Researchers discovered that Lactiplantibacillus plantarum 8p-a3, a probiotic strain, shows significant changes in its extracellular membrane vesicles when developing resistance to antibiotics (amoxicillin and clarithromycin).
  • These changes are linked to large genome rearrangements and alterations in how the strain responds to various antimicrobials, as well as an increase in virulence factors.
  • The study highlights how the structure and function of these vesicles may adapt to help the bacteria survive under the pressure of antibiotics, aiding in the understanding of probiotic safety and effectiveness.

Article Abstract

Significant changes in lactobacillus-derived extracellular membrane vesicles, which transfer lipids, polysaccharides, proteins, and nucleic acids, were for the first time observed to accompany the development of resistance to antibiotics (amoxicillin and clarithromycin) in vitro in the probiotic strain Lactiplantibacillus plantarum 8p-a3. The changes occur together with large-scale genome rearrangements, changes in the profile of phenotypic sensitivity to antimicrobials of various groups, and evolution of virulence. Changes in vesicles affected their structure, composition, and activity against biofilms of opportunistic bacteria. The data provide for a better understanding of the molecular mechanisms of microbial survival under selective pressure of antimicrobials, the functional potential of probiotic vesicles, and probiotic safety assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0012496624600246DOI Listing

Publication Analysis

Top Keywords

probiotic strain
8
strain lactiplantibacillus
8
lactiplantibacillus plantarum
8
plantarum 8p-a3
8
8p-a3 changes
8
structure extracellular
4
vesicles
4
extracellular vesicles
4
vesicles bacterial
4
bacterial biofilms
4

Similar Publications

Isolation and characterization of a from fish pond water.

Front Microbiol

December 2024

Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, China.

Introduction: The intricate habitats of aquatic organisms, coupled with the prevalence of pathogens, contribute to a high incidence of various diseases, particularly bacterial infections. Consequently, the formulation of sustainable and effective disease management strategies is crucial for the thriving aquaculture sector.

Methods And Results: In this investigation, a strain of , designated , was isolated from a freshwater fish pond.

View Article and Find Full Text PDF

The present research was aimed to isolate potential probiotic organisms from dairy products locally made in and around the Saurashtra region of Gujarat. A total of 224 colonies were screened for primary attributes. Based on the results, 70 isolates were carried further for secondary screening.

View Article and Find Full Text PDF

This study investigated the survival dynamics of BG24, a probiotic strain, within reconstituted skim milk (RSM) and yeast extract (YE) matrices during the spray-drying (SD) process, encompassing of inlet/outlet air temperatures. Notably, optimum SD parameters were found to be an inlet air temperature of 150°C and outlet air temperature of 83°C, that achieving high viability (92.23%), and reducing both moisture content (MC) (3.

View Article and Find Full Text PDF

The process of biofilm formation during table olive fermentation is crucial to turning this fermented vegetable into a probiotic food. Some phenolic compounds have been described as important quorum-sensing molecules during biofilm development. The present in vitro study examined the effects of three phenolic compounds widely found in table olive fermentations (Oleuropein 0-3000 ppm, Hydroxytyrosol 0-3000 ppm, and Tyrosol 0-300 ppm) on the development of single biofilm by diverse microorganisms isolated from table olives ( 13B4, Lp119, and LPG1; Lp15 and LAB23; and yeasts Y12, Y13, and Y18).

View Article and Find Full Text PDF

The probiotic strain Nissle 1917 (EcN) with high biocompatibility and susceptibility to genetic modification is often applied in bacterial therapies for cancer. However, most studies have used plasmids as vectors to construct engineering strains from EcN. Plasmid-based expression systems suffer from genetic instability, and they need antibiotic selective pressure to maintain high copy number.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!