Purpose: This study examined the physiological responses of ten elite divers to normal breathing (BHn), glossopharyngeal inhalation (BHi), and complete exhalation (BHe) prior to five maximal breath-hold (BH) efforts.
Methods: Breath-hold time (BHT), hemological variables, mean arterial pressure (MAP), other hemodynamic indices, and diaphragmatic activity (DA) were recorded. During BHs, phases were identified as easy-going (EPh: minimal DA), struggling (SPh: increased DA), PhI (MAP transition), PhII (MAP stabilization), and PhIII (steep MAP increase).
Results: BHi significantly extended BHT (309.14 ± 12.91 s) compared to BHn (288.77 ± 10.99 s) and BHe (151.18 ± 10.94 s) (P = 0.001). BHT, EPh, and SPh in BHi increased by 7.05%, 2.57%, and 11.08% over BHn, respectively. PhIII appeared earlier in BHe than in other conditions (P < 0.001) and accounted for 47.07%, 44.96%, and 60.18% of BHT in BHn, BHi, and BHe, respectively. SPh comprised 47.10%, 46.01%, and 45.13% of BHT in BHn, BHi, and BHe, respectively, with SPh onset coinciding with PhIII onset in BHn and BHi but not in BHe. Bradycardia was more pronounced in BHe, maintaining better stroke volume. No significant differences in red blood cells or maximal MAP were noted across conditions.
Conclusion: Glossopharyngeal inhalation improves BHT and extends EPh and SPh durations. PhIII onset is linked to SPh in BHn and BHi but not in BHe. BHe triggers an earlier MAP rise, leading to stronger parasympathetic responses. Despite similar maximal MAP across conditions, the higher BHT and tissue hypoxemia in BHi and BHn suggest MAP is a key limiting factor in apnoea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-024-05632-x | DOI Listing |
Allergy
December 2024
Service de Pneumologie, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium.
Background: Exposure-related changes in exhaled nitric oxide (FeNO) and sputum eosinophils have not been thoroughly compared in the investigation of occupational asthma.
Objective: This study aimed at comparing the accuracies of the changes in FeNO concentrations and sputum eosinophil counts in identifying asthmatic reactions induced by occupational agents during specific inhalation challenges (SICs).
Methods: This retrospective multicenter study included 321 subjects who completed an assessment of FeNO and sputum eosinophils before and 24 h after SICs with various occupational agents, of whom 156 showed a positive result.
Proc (Bayl Univ Med Cent)
August 2024
North Texas Allergy and Asthma Associates and Division of Allergy/Immunology, Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas, USA.
Multiple biologic agents are approved for the treatment of severe persistent asthma not controlled by inhaled corticosteroid/beta-agonist therapy. Appropriate phenotyping can aid in picking the right biologic for the right patient. Here is a unique case of a patient with severe asthma and respiratory arrest, with fraction of exhaled nitric oxide >300 ppb whose asthma became completely controlled with dupilumab.
View Article and Find Full Text PDFAerosp Med Hum Perform
November 2024
Background: Arterial gas embolism (AGE) may occur while breathing compressed air and failing to exhale during ascent to compensate for gas expansion as pressure decreases. Trauma to the lungs from over-pressurization may result in air bubbles entering the pulmonary veins and subsequently the systemic circulation, causing obstructed blood flow and inflammatory cascades. AGEs are known to always manifest within 10 min of surfacing from depth.
View Article and Find Full Text PDFACS Sens
December 2024
Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
Long COVID (LC) is a great global health concern, affecting individuals recovering from SARS-CoV-2 infection. The persistent and varied symptoms across multiple organs complicate diagnosis and management, and an incomplete understanding of the condition hinders advancements in therapeutics. Current diagnostic methods face challenges related to standardization and completeness.
View Article and Find Full Text PDFJ Thorac Dis
November 2024
Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
Background: The identification of volatile organic compounds (VOCs) in exhaled breath has garnered significant research attention as a means of screening and diagnosing lung cancer in recent decades. However, there is no universally accepted protocol for the collection of breath samples to measure VOCs in the clinical context. The purpose of this study was to summarize the current sampling techniques used to obtain VOCs from exhaled breath specifically in the context of lung cancer screening and diagnosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!