Orchids offer a variety of floral rewards to pollinators. In many orchid groups, however, the transfer of pollen is based on food-deception, as in the case of Laelia (including Schomburgkia s.s.), a genus assigned to the Neotropical subtribe Laeliinae. Here, we report on the reproductive biology of a Brazilian member of this subtribe, namely, Laelia gloriosa, occurring in the forested areas of southeastern Brazil. The study includes analyses of floral morphology, histochemistry, and the chemical analysis of floral rewards and scents. Pollinators and pollination mechanism data were collected in the field by means of focal observations. Analyses of breeding systems and the percentage of potentially viable seed were also recorded. The floral morphology of Laelia gloriosa indicates that this species is melittophilous. The flowers release a citrus-like fragrance that attracts many species of bee. The flowers offer waxy material as a reward, and this is collected exclusively by Meliponini bees. Several bee species visit the flowers. However, those of L. gloriosa are pollinated exclusively by Trigona spinipes. Pollinaria are deposited on the bee's scutellum. Plants of the studied population were entirely self-compatible, but pollinator-dependent. The frequency of visits to these flowers was greater than in rewardless Laeliinae. Our study provides the first evidence of lipoidal substances as a resource in Laeliinae. The discovery that an orchid species (Laelia gloriosa) of this subtribe, hitherto considered to be entirely pollinated by nectar-seeking pollinators, offers a floral waxy material and provides new insights into the evolution of this important subtribe.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-024-01941-5 | DOI Listing |
New Phytol
December 2024
Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA.
Ann Bot
December 2024
Instituto Tecnológico Vale, Rua Boaventura da Silva, 955, Belém, PA 66055-090, Brazil.
Background: The frequency and intensity of droughts are expected to increase under global change, driven by anthropogenic climate change and water diversion. Precipitation is expected to become more episodic under climate change, with longer and warmer dry spells, although some areas might become wetter. Diversion of freshwater from lakes and rivers and groundwater pumping for irrigation of agricultural fields are lowering water availability to wild plant populations, increasing the frequency and intensity of drought.
View Article and Find Full Text PDFGlobal warming is one of the biggest threats to global biodiversity causing not only changes in the patterns of precipitation and temperature but also disturbing ecological interactions. The aim of our study was to forecast the effect of climate change on the distribution of food-deceptive orchid species whose pollination strategy relies on a strict association with pollinators and co-occurring rewarding Faboideae plants. We used the ecological niche modeling approach to evaluate future overlap of the suitable niches of studied orchid species with the predicted distribution of their ecological partners.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, 94720, USA.
Antioxidants (Basel)
November 2024
Norwegian Institute of Bioeconomy Research-NIBIO Ullensvang, Ullensvangvegen 1005, 5781 Lofthus, Norway.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!