Spinal cord injury (SCI) represents a destructive pathological and neurological state. Methyltransferase-like 14 (Mettl14)-mediated m6A modification links to spinal cord injury (SCI), and we explored its mechanism. SCI mouse models were subjected to si-Mettl14 and si-negative control treatments and mouse behavior, pathological condition and apoptosis assessments. The oxygen/glucose deprivation (OGD)-induced spinal cord neuronal cell models were processed with si-Mettl14 and si-peroxisome proliferator-activated receptor γ (PPARγ) plasmids, and pcDNA3.1-YTHDF2 or synthetic dsDNA Poly(dA: dT), followed by viability and apoptosis evaluation by MTT and flow cytometry. Levels of Mettl14, PPARγ, and YTHDF2 mRNAs and proteins, AIM2 inflammasome activation-associated and pyroptosis marker proteins, PPARγ m6A methylation and pyroptosis-related inflammatory factors were determined by RT-qPCR, Western blot, Me-RIP and ELISA, with PPARγ mRNA stability and YTHDF2-PPARγ interaction assessed. Mettl14 and PPARγ m6A modification levels rose in SCI spinal cord tissues, while PPARγ levels dropped. Mettl14 knockdown dampened m6A modification, up-regulated PPARγ levels, weakened neuronal apoptosis, and ameliorated SCI in mice. OGD down-regulated PPARγ and accelerated OGD-induced neuronal apoptosis and pyroptosis via inducing Mettl14-mediated m6A modification. Mettl14 amplified PPARγ mRNA degradation and down-regulated PPARγ by mediating m6A methylation via the YTHDF2-dependent pathway. Mettl14 silencing-mediated PPARγ m6A methylation mitigated OGD-induced neuronal apoptosis and pyroptosis by inactivating AIM2 inflammasome. Mettl14 triggered activated AIM2 inflammasomes, promoted neuronal apoptosis and pyroptosis, and worsened SCI in SCI mice via mediating PPARγ m6A methylation. Mettl14 regulates AIM2 inflammasome activation, and redounds to spinal cord neuronal apoptosis and pyroptosis in SCI by mediating m6A methylation of PPARγ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13105-024-01047-6 | DOI Listing |
J Integr Neurosci
December 2024
Department of Human Anatomy, School of Basic Medical Sciences, Wannan Medical College, 241002 Wuhu, Anhui, China.
Background: K48-linked ubiquitin chain (Ub-K48) is a crucial ubiquitin chain implicated in protein degradation within the ubiquitin-proteasome system. However, the precise function and molecular mechanism underlying the role of Ub-K48 in the pathogenesis of Alzheimer's disease (AD) and neuronal cell abnormalities remain unclear. The objective of this study was to examine the function of K48 ubiquitination in the etiology of AD, and its associated mechanism of neuronal apoptosis.
View Article and Find Full Text PDFJ Integr Neurosci
December 2024
Department of Neurology, Hainan West Central Hospital, 571799 Danzhou, Hainan, China.
Background: Ischemic stroke (IS) is the leading cause of mortality worldwide. Herein, we aimed to identify novel biomarkers and explore the role of C-type lectin domain family 7 member A () in IS.
Methods: Differentially expressed genes (DEGs) were screened using the GSE106680, GSE97537, and GSE61616 datasets, and hub genes were identified through construction of protein-protein interaction networks.
Front Immunol
December 2024
Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, China.
Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.
View Article and Find Full Text PDFJ Otol
July 2024
Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
Objectives: Deletion of gene in mice has been linked to progressive hearing loss and degeneration of cochlear cells. Cisplatin, an antitumor drug, can cause various side effects, including ototoxicity. The aim of this study was to investigate the effects of on cisplatin-induced hearing impairment in mice and to explore the possible mechanism.
View Article and Find Full Text PDFChin J Traumatol
December 2024
Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:
Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!