AI Article Synopsis

  • Ligusticum sinense cv. Chuanxiong (L. Chuanxiong), a common traditional Chinese medicine, is facing issues with high cadmium (Cd) levels, which impact its safety and quality for clinical use and international trade.
  • A study was conducted under 25 μM Cd stress to examine the plant's physiological and biochemical responses, revealing that this concentration did not hinder growth but actually increased chlorophyll a and root activity, indicating a hormesis effect.
  • The research also found that Cd stress led to thickened root cell walls and increased levels of glutathione (GSH), which helped mitigate oxidative stress and suggested mechanisms for Cd absorption and accumulation in L. Chuanxiong.

Article Abstract

Ligusticum sinense cv. Chuanxiong (L. Chuanxiong), one of the widely used traditional Chinese medicines (TCM), is currently facing the problem of excessive cadmium (Cd) content. This problem has significantly affected the quality and safety of L. Chuanxiong and become a vital factor restricting its clinical application and international trade development. Currently, to solve the problem of excessive Cd, it is essential to research the response mechanisms of L. Chuanxiong to Cd stress. However, there are few reports on its physiological and biochemical responses under Cd stress. In this study, we conducted the hydroponic experiment under 25 μM Cd stress, based on the Cd content of the genuine producing areas soil. The results showed that 25 μM Cd stress not only had no significant inhibitory effect on the growth of L. Chuanxiong seedlings but also significantly increased the chlorophyll a content (11.79%) and root activity (51.82%) compared with that of the control, which might be a hormesis effect. Further results showed that the absorption and assimilation of NH increased in seedlings under 25 μM Cd stress, which was associated with high photosynthetic pigments. Here, we initially hypothesized and confirmed that Cd exceedance in the root system of L. Chuanxiong was due to the thickening of the root cell wall, changes in the content of the cell wall components, and chelation of Cd by GSH. There was an increase in cell wall thickness (57.64 %) and a significant increase in cellulose (25.48%) content of roots under 25 μM Cd stress. In addition, L. Chuanxiong reduced oxidative stress caused by 25 μM Cd stress mainly through the GSH/GSSG cycle. Among them, GSH-Px (48.26%) and GR (42.64%) activities were significantly increased, thereby maintaining a high GSH/GSSG ratio. This study preliminarily reveals the response of L. Chuanxiong to Cd stress and the mechanism of Cd enrichment. It provides a theoretical basis for solving the problem of Cd excessive in L. Chuanxiong.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473752PMC
http://dx.doi.org/10.1007/s44154-024-00187-5DOI Listing

Publication Analysis

Top Keywords

μm stress
20
cell wall
12
chuanxiong
9
stress
9
physiological biochemical
8
biochemical responses
8
traditional chinese
8
problem excessive
8
content
5
μm
5

Similar Publications

Aerodynamic performance enhancement of centrifugal compressor using numerical techniques.

F1000Res

January 2025

Department of Aeronautical & Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Background: Centrifugal compressors are dynamic machines utilizing a rotating impeller, efficiently accelerate incoming gases, transforming kinetic energy into pressure energy for compression. They serve a wide range of industries, including air conditioning, refrigeration, gas turbines, industrial processes, and applications such as air compression, gas transportation, and petrochemicals, demonstrating their versatility. Designing a centrifugal compressor poses challenges related to achieving high aerodynamic efficiency, surge and choke control, material selection, rotor dynamics, cavitation, erosion, and addressing environmental considerations while balancing costs.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

Micro-corrugated chiral nematic cellulose nanocrystal films integrated with ionic conductive hydrogels leads to flexible materials for multidirectional strain sensing applications.

Int J Biol Macromol

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.

View Article and Find Full Text PDF

Under the increasing severity of drought issues and the urgent need for the resourceful utilization of agricultural waste, this study aimed to compare the soil water retention properties of hydrogels prepared from Chinese cabbage waste (CW) and banana peel (BP) using grafting techniques with acrylic acid (AA) and acrylamide (AAm). Free radical polymerization was initiated with ammonium persulfate (APS), and N, N'-methylene bisacrylamide (MBA) served as the crosslinking agent to fabricate the grafted polymer hydrogels. The hydrogels were subjected to detailed evaluations of their water absorption, reusability, and water retention capabilities through indoor experiments.

View Article and Find Full Text PDF

This study presents a comprehensive assessment of the fresh state, rheological, and mechanical properties of alkali-activated mortars (AAMs) developed by incorporating magnesium oxide (MgO) and nanomaterials. A total of 24 AAM mixes with varying content of MgO, multi-walled carbon nanotube (MWCNT), and reduced graphene oxide (rGO) were developed following the one-part dry mix technique using powder-based activators/reagents. The effects of the types/combinations of source materials (binary or ternary)/reagents, MgO (0 to 5%), MWCNT (0 to 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!