Various healthcare domains have witnessed successful preliminary implementation of artificial intelligence (AI) solutions, including radiology, though limited generalizability hinders their widespread adoption. Currently, most research groups and industry have limited access to the data needed for external validation studies. The creation and accessibility of benchmark datasets to validate such solutions represents a critical step towards generalizability, for which an array of aspects ranging from preprocessing to regulatory issues and biostatistical principles come into play. In this article, the authors provide recommendations for the creation of benchmark datasets in radiology, explain current limitations in this realm, and explore potential new approaches. CLINICAL RELEVANCE STATEMENT: Benchmark datasets, facilitating validation of AI software performance can contribute to the adoption of AI in clinical practice. KEY POINTS: Benchmark datasets are essential for the validation of AI software performance. Factors like image quality and representativeness of cases should be considered. Benchmark datasets can help adoption by increasing the trustworthiness and robustness of AI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473745PMC
http://dx.doi.org/10.1186/s13244-024-01833-2DOI Listing

Publication Analysis

Top Keywords

benchmark datasets
24
recommendations creation
8
creation benchmark
8
artificial intelligence
8
validation software
8
software performance
8
benchmark
6
datasets
6
datasets reproducible
4
reproducible artificial
4

Similar Publications

Anomaly detection is crucial in areas such as financial fraud identification, cybersecurity defense, and health monitoring, as it directly affects the accuracy and security of decision-making. Existing generative adversarial nets (GANs)-based anomaly detection methods overlook the importance of local density, limiting their effectiveness in detecting anomaly objects in complex data distributions. To address this challenge, we introduce a generative adversarial local density-based anomaly detection (GALD) method, which combines the data distribution modeling capabilities of GANs with local synthetic density analysis.

View Article and Find Full Text PDF

Modern dialogue systems rely on emotion recognition in conversation (ERC) as a core element enabling empathetic and human-like interactions. However, the weak correlation between emotions and semantics poses significant challenges to emotion recognition in dialogue. Semantically similar utterances can express different types of emotions, depending on the context or speaker.

View Article and Find Full Text PDF

Manifold learning techniques have emerged as crucial tools for uncovering latent patterns in high-dimensional single-cell data. However, most existing dimensionality reduction methods primarily rely on 2D visualization, which can distort true data relationships and fail to extract reliable biological information. Here, we present DTNE (diffusive topology neighbor embedding), a dimensionality reduction framework that faithfully approximates manifold distance to enhance cellular relationships and dynamics.

View Article and Find Full Text PDF

Deep learning analyses of splicing variants identify the link of PCP4 with amyotrophic lateral sclerosis.

Brain

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China.

Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease, with most sporadic cases lacking clear genetic causes. Abnormal pre-mRNA splicing is a fundamental mechanism in neurodegenerative diseases. For example, TAR DNA-binding protein 43 (TDP-43) loss-of-function (LOF) causes widespread RNA mis-splicing events in ALS.

View Article and Find Full Text PDF

Enhanced Image Retrieval Using Multiscale Deep Feature Fusion in Supervised Hashing.

J Imaging

January 2025

RCAM Laboratory, Telecommunications Department, Sidi Bel Abbes University, Sidi Bel Abbes 22000, Algeria.

In recent years, deep-network-based hashing has gained prominence in image retrieval for its ability to generate compact and efficient binary representations. However, most existing methods predominantly focus on high-level semantic features extracted from the final layers of networks, often neglecting structural details that are crucial for capturing spatial relationships within images. Achieving a balance between preserving structural information and maximizing retrieval accuracy is the key to effective image hashing and retrieval.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!