Patterns of decomposition and functional traits for flower and leaf litter in tropical woody species.

Oecologia

Departamento de Ecologia, Universidade Federal Do Rio Grande Do Norte, Natal, 59072-970, Brazil.

Published: December 2024

The variation within and across species has afterlife effects on carbon and nutrient cycling through the alteration of litter decomposability. However, the focus on leaves may not reflect a whole-plant economic spectrum of strategies. Here, we assessed the patterns and predictors of flower and leaf-litter decomposition at the intra- (i.e., flowers and leaves of the same species) and inter-specific (i.e., flowers and leaves from different species) levels for 29 tropical woody species in northeast Brazil. We evaluated nine functional litter traits, including structural and chemical traits. Flower litter decomposed, on average, three times faster than leaf litter (11.9% and 39.4% mass remaining, respectively) and exhibited higher water-holding capacity (WHC), leaching (LEA), and N, P, and K content. Otherwise, leaf litter showed higher density (DEN) and Ca, Mg, and Na content. The average relative differences in decomposition rate and functional traits between flower and leaf litter did not differ at both intra- and inter-specific levels. The predictors of decomposition were mostly similar, explaining 39% and 37% of flower and leaf litter, respectively. Leaching, P, Ca, Mg, and Na predict both flower and leaf-litter decomposition. However, WHC exclusively predicted flower-litter decomposition, and DEN, N, and K exclusively predicted leaf-litter decomposition. The observed differences in decomposition rate and functional traits between flower and leaf litter indicate that the afterlife effects differ between these plant organs and leverage the role of flower litter and its secondary consequences to nutrient and carbon cycling on ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-024-05616-wDOI Listing

Publication Analysis

Top Keywords

leaf litter
24
traits flower
16
flower leaf
16
functional traits
12
leaf-litter decomposition
12
litter
10
flower
8
tropical woody
8
woody species
8
afterlife effects
8

Similar Publications

The readiness of leaf-litter to burn in the presence of fire differs greatly between species. Thus, forests composed of different species vary in their susceptibility to fire. Fire susceptibility of forests may also differ from the arithmetic means of flammability of their component species, i.

View Article and Find Full Text PDF

Spatio-temporal analysis of litterfall load in the lower reaches of Qarqan and Tarim rivers using BP neural networks.

Sci Rep

January 2025

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, 830011, China.

Litterfall load is crucial in maintaining ecosystem health, controlling wildfires, and estimating carbon stock in arid regions. However, there is a lack of spatiotemporal analysis of litterfall in arid riparian forests. This study aims to estimate Litterfall load using a BP neural network based on vegetation indices from Landsat 5 and 8 satellite images, litterfall inventory data, slope, and distance to major river tributaries.

View Article and Find Full Text PDF

Microbial Community Structure, Diversity, and Succession During Decomposition of Kiwifruit Litters with Different Qualities.

Microorganisms

December 2024

Jiangxi Provincial Key Laboratory of Plantation and High Valued Utilization of Specialty Fruit Tree and Tea, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China.

There are differences in the litter quality and decomposition rate of kiwifruit varieties, but it is not clear whether these differences are related to microbial communities. The leaf litters of two kiwifruit varieties ( cv 'Hongyang' and cv 'Jinyan') were taken as objects, and the structure, diversity, and succession of the soil microbial communities were analyzed using an in situ decomposition experiment. Moreover, the contents of C, N, P, and K in the litters during decomposition were analyzed.

View Article and Find Full Text PDF

Patterns and Driving Factors of Litter Decomposition Rates in Global Dryland Ecosystems.

Glob Chang Biol

January 2025

State Key Laboratory of Urban and Regional Ecology, Research Center for eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.

Litter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism.

View Article and Find Full Text PDF

Early allelopathic input and later nutrient addition mediated by litter decomposition of invasive affect native plant and facilitate its invasion.

Front Plant Sci

December 2024

Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China.

Litter decomposition is essential for nutrient and chemical cycling in terrestrial ecosystems. Previous research on litter decomposition has often underestimated its impact on soil nutrient dynamics and allelopathy. To address this gap, we conducted a comprehensive study involving both field and greenhouse experiments to examine the decomposition and allelopathic effects of the invasive L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!