End Column Reverse Chromatography as a Novel Approach for Enhanced Separation: A Pilot Study.

J AOAC Int

Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza, 12311 Egypt.

Published: October 2024

Background: Currently, the most popular technique in gas chromatography (GC) is the "temperature programming", where the temperature increases from the start of the injection. This leads to faster elution of analytes compared to isothermal methods. However, isothermal methods are considered optimal for separating compounds with similar retention times. Another interesting technique that provides higher resolution is the dynamic thermal gradient gas chromatography (TGGC), where separations are achieved as a decreasing thermal gradient. This gradually decreases the positive gas velocity. Nevertheless, it was proven that GC techniques with negative velocity gradients don't improve the resolution of compounds with nearly identical retention times.

Objectives: Optimizing a new GC approach to combine both the short time from positive temperature ramps programming, and the enhanced separation of the negative ramps of the TGGC, a model under the name of "end column reverse chromatography".

Methods: The process simply consists of two steps, the first is a normal positive ramp from the start of the injection, the second step is a negative thermal ramp at a time that is around the retention time of the first eluting peak. This will decrease the solute velocity almost solely for the second compound leading to relatively enhanced separation.

Results: Optimized ECRC method increased the resolution of two isomers (trans and cis chlordane) from 1 (slightly overlapping) in case of temperature programming to 2.78 as shown in this study. This comes in expense of the width and intensity of the peaks, where the intensity decreased about 17% and 12% for cis and trans chlordane, and the peak width increased with 37% and 77% for the same compounds respectively.

Conclusions: ECRC is a novel model for enhanced separation that comes with some drawbacks.

Highlights: It can be an alternative approach to get a fast GC method with enhanced separation for isomers.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jaoacint/qsae080DOI Listing

Publication Analysis

Top Keywords

enhanced separation
16
column reverse
8
gas chromatography
8
start injection
8
isothermal methods
8
thermal gradient
8
enhanced
5
reverse chromatography
4
chromatography novel
4
novel approach
4

Similar Publications

Sourdough bread consumption has been associated with improved glucose and appetite regulation thanks to the presence of organic acids produced during fermentation of the flour-water mixture. We investigated the effects of whole meal sourdough bread (WSB) rich in lactic acid on energy intake, satiety, gastric emptying, glucose, and C-peptide response compared to whole meal yeast bread (WYB). Forty-four normal-weight participants (age: 30 ± 10 y; BMI: 23 ± 2 kg/m) participated in this double-blind, randomized cross-over trial, consisting of two study visits separated by one week.

View Article and Find Full Text PDF

Global Perspectives on Returning Genetic Research Results in Parkinson Disease.

Neurol Genet

December 2024

From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.

Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.

View Article and Find Full Text PDF

In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.

View Article and Find Full Text PDF

The widespread use of neodymium-iron-boron (NdFeB) magnets has raised concerns about the environmental impact of their disposal, prompting the need for sustainable recycling strategies. Traditional solvents used in recycling are toxic and flammable, making them risky to use. Ionic liquids are safer and greener options with low vapor pressure, high stability, and less flammability.

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!