Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Developing stable and active electrocatalysts is crucial for enhancing the oxygen evolution reaction (OER) efficiency, which sluggish kinetics hinder sustainable hydrogen production. High entropy selenides (HESes) feature with random distribution of multiple metals cations and unique electronic and size effect of Se anion, allowing for precious regulation of their catalytic properties towards high OER activity. In this work, we report a series of high-entropy selenides catalysts with tunable lattice strain for electrocatalytic oxygen evolution. Electrochemical measurements show that the quinary (NiCoMnMoFe)Se requires only 291 mV to reach 10 mA cm and exhibits a superior stability with negligible current decay during 100 h's continuous operation. By combining experimental measurements and theoretical calculation, the study reveals that the lattice distortion, reflected by the local microstrain near the active site, plays a vital role in boosting the OER activity of HESes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202401871 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!